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presentation and discussion of new technical results at the interface of these two disciplines.
We hope that this Workshop will be the first of a series of many which will serve to promote
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TECHNICAL PROGRAM

Wednesday, October 26
7:00-9:00 pm: WELCOME RECEPTION

Thursday, October 27
PLENARY TALKS, INVITED SESSIONS AND SPECIAL TALK

8:00-9:00 am: PLENARY TALK
T. M. Cover, Stanford U., “Information theory and statistics.”

9:00 am—12:15 pm: SESSION I
Stochastic Complexity and Universal Data Compression

Session Organizers: P. Shields, U. of Toledo, and J. Ziv, Technion
9:00-9:30 1. Csiszar, Hungarian Academy of Sciences, “Maximum entropy and related methods.”

9:30-10:00 N. Merhav, Technion, “A stronger version of the redundancy-capacity theorem
of universal coding,” (joint work with M. Feder).

10:00-10:30  J. Ziv, Technion, “Bounds on universal coding: The next generation,” (joint
work with Y. Hershkovits.)
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10:45-11:15  B. Clarke, U. of British Columbia, “Jeffreys’ prior yields the asymptotic minimax
redundancy,” (joint work with A.R. Barron).

11:15-11:45  B. Yu, U. of California at Berkeley, “Lower bounds on expected redundancy.”
11:45-12:15  P. Shields, U. of Toledo, “When is the weak rate equal to the strong rate?”
1:45 —2:45 pm: PLENARY TALK

R. M. Gray, Stanford U., “Bayes risk-weighted vector quantization.”

2:45 pm—6:00 pm: SESSION II
Vector Quantization, Classification and Regression Trees
Session Organizers: R. M. Gray, Stanford U., and R. Olshen, Stanford U.

2:45-3:15 R. Olshen, Stanford U., “Variable-rate, lossy, tree-structured codes and
digital radiography.”
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classification rules using a composite splitting criterion.”

3:45-4:15 R. Picard, MIT, “Tree-structured clustered probability models for texture,”
(joint work with K. Popat).
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4:30-5:00 Q. Xie, U. of British Columbia, “Nonparametric classifier design using
vector quantization,” (joint work with R.K. Ward and C.A. Laszlo ).

5:00-5:30 M. Riley, AT&T, “Tree-based models for speech and language.”

5:30-6:00 X. Wu, U. of Western Ontario, “Image coding via bintree segmentation

and texture VQ.”

7:30-8:15 pm: SPECIAL TALK
H.V. Poor, Princeton U., “Maximum entropy and robust prediction on a simplex.”
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Friday, October 28
PLENARY TALKS, INVITED SESSIONS AND SPECIAL TALK

8:00-9:00 am: PLENARY TALK
J. Rissanen, IBM San Jose, “Fisher information, stochastic complexity, and universal modeling.”

9:00 am-12:15 pm: SESSION III

Randomization Complexity and Information Theory

Session Organizers: M. Burnashev, IPPI, Moscow, and S. Verdd, Princeton U.

9:00-9:30 R.J. Lipton, Princeton U., “Coding for noisy feasible channels.”

9:30-10:00 L. Schulman, U. of California at Berkeley, “Coding for distributed computation.”
10:00-10:30  S. Verdd, Princeton U., “Minimal randomness and information theory.”

10:30-10:45 Coffee Break

10:45-11:15 Y. Steinberg, George Mason U., “Finite precision intrinsic randomness
and source resolvability,” (joint work with S. Verdd).

11:15-11:45  Z. Zhang, U. of Southern California, “Identification via compressed data,”
(joint work with R. Ahlswede and E.-H. Yang).

11:45-12:15 M. Burnashev, IPPI, Moscow, “Testing of composite hypotheses and ID-codes.”
(joint work with S. Verdi).

1:45 —2:45 pm: PLENARY TALK
M. Vetterli, U. of California at Berkeley, “Signal expansions for compression.”

2:45 pm—6:00 pm: SESSION IV
Nonparametric Function Estimation
Session Organizers: E. Masry, U. of California at San Diego, and I. Johnstone, Stanford U.

2:45-3:15 A. Barron, Yale U., “Asymptotically optimal model selection and neural nets.”

3:15-3:45 R. Khasminskii, Wayne State U., “Some estimation problems in infinite
dimensional Gaussian white noise,” (joint work with I. Ibragimov).

3:45-4:15 E. Masry, U. of California at San Diego “Local polynomial estimation of regression
functions for mixing processes,” (joint work with J. Fan).
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4:30-5:00 L. Breiman, U. of California at Berkeley, “Issues and advances in
high-dimensional function estimation.”

5:00-5:30 L. Gyérfi, Tech. Univ., Budapest, “The asymptotic normality of global
errors for a histogram-based density estimate.”

5:30-6:00 P. Hall, Australian National U., “Bandwidth choice and convergence

rates in density estimation with long-range dependent data,”
(joint work with S.N. Lahiri and Y.K. Truong).

7:30-8:15 pm: SPECIAL TALK
A. Dembo, Stanford U., “Large deviations in information theory and statistics.”
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Saturday, October 29
PLENARY TALK AND INVITED SESSIONS

9:00 am—-12:15 pm: SESSION V
Markov Random Fields
Session Organizers: M. Miller, Washington U., and L. Pitt, U. of Virginia

9:00-9:30 F. Comets, U. of Paris, “Large deviations and consistent estimates for
Gibbs random fields.”

9:30-10:00 Y. Amit, U. of Chicago, “Large deviations and the rate distortion
theorem for Gibbs distributions.”

10:00-10:30  L.D. Pitt, U. of Virginie, “Estimation and prediction for
(mostly Gaussian) Markov fields in the continuum.”

10:30-10:45 Coffee Break

10:45-11:15 J.S. Rosenthal, U. of Toronto, “Markov chain Monte Carlo algorithms.”

11:15-11:45 J.A. O’Sullivan, Washington U., “Markov random fields on graphs
for natural languages,” (joint work with K. Mark and M.I. Miller).

11:45-12:15  B. Hajek, U. of lllinois, “Equilibria in infinite random graphs.”

1:45 —2:45 pm: PLENARY TALK
D. Geman, U. of Massachusetts, “ The entropy strategy for shape recognition.”

2:45 —6:00 pm: SESSION VI
Theory and Applications of Wavelets
Session Organizers: D. Donoho, Stanford U., and S. Mallat, NYU

2:45-3:15 R. Coifman, Yale U., “Selection of best bases for classification
and regression,” (joint work with N. Saito).
3:15-3:45 R.A. DeVore, U. of South Carolina, “The role of approximation and smoothness
spaces in compression and noise removal,” (joint work with V. Temlyakov).
3:45-4:15 D. Donoho, Stanford U., “Adaptive signal representations:
How much adaptation is too much?”
4:15-4:30 Coffee Break
4:30-5:00 P. Flandrin, ENS-Lyon, “Tracking long-range dependencies
with wavelets,” (joint work with P. Abry).
5:00-5:30 S. Mallat, NYU, “Wayvelet vector quantization with
matching pursuit,” (joint work with G. Davis).
5:30-6:00 A.S. Willsky, MIT, “Multiresolution models for

random fields and their use in statistical image processing,” (joint work with
H. Krim and W.C. Karl).
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Thursday, October 27

8:30-10:30 pm: POSTER SESSION I, Reception
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21.

G. Cheang, Yale U., “Neural network approximation and estimation of functions.”

J.W. Craig, Interstate Electronics Corp., “Markov chains and random walks in data

communication receivers.” - ) )
P.M. Djurié, SUNY Stony Brook, “MMSE parameter estimation of exponentially

damped sinusoids,” (joint work with H.-T. Li). .
M.A.T. Figueiredo, Instituto Técnico PORTUGAL, “Adaptive edge detection in compound
Gauss-Markov random fields using the minimum description length principle,”

(joint work with J.M.N. Leitdo).
R.L. Fry, Johns Hopkins U., “Maximized mutual information using macrocanonical
probability distributions.”
S. Goswami, Carnegie Mellon. U., “Sample path description of Gauss Markov random fields,”
(joint work with J.M.F. Moura).
H.J. Holz, George Washington U., “Non-Parametric discriminatory power,”

(joint work with M.H. Loew).
R.E. Krichevskii, Mathematical Institute and State U., Novosibirsk, Russia, “Shannon-Hartley entropy
ratio under Zipf law,” (joint work with M.P. Scharova).
A. Lapidoth, Stanford U., “Mismatched encoding in rate distortion theory”

M.B. Maljutov, Moscow U., “On the mean rate of sequential search for significant

variables of a function in noise.” ' _ . o
R. Matzner, Federal Armed Forces U. Munich, “SNR estimation and blind equalization

(deconvolution) using the kurtosis,” (joint work with K. Letsch).
D.S. Modha, U. Cal. at San Diego, “Minimum complexity regression estimation with
weakly dependent observations,” (joint work with E. Masry).
A.T. Murgan, U. of Politehnica, Bucharest, “A comparison of algorithms for lossless data
compression using the Lempel-Ziv-Welch type method,” (joint work with R. Radescu).
L.B. Nelson, Princeton U., “EM and SAGE algorithms for multi-user detection,”
(joint work with H.V. Poor)
M. Pawlak, U. of Ulm, Germany, “Nonparametric estimation of a class of smooth
functions,” (joint work with U. Stadtmiiller)
S.E. Posner, Princeton U., “Consistency and rates of convergence of k, nearest
neighbor estimation under arbitrary sampling,” (joint work with S.R. Kulkarni).
W.L. Poston, Naval Surface Warfare Ctr., “Choosing data sets that optimize the deter-
minant of the Fisher information matrix,” (joint work with J.L. Solka).
J. Solka, Naval Surface Warfare Ctr., “The application of Akaike information criterion
based pruning to nonparametric density estimates,” (joint work with C. Priebe,
G. Rogers, W. Poston and D. Marchette).
Y. Steinberg, George Mason U., “Improved Ziv-Zakai lower bound for vector parameter
estimation,” (joint work with K.L. Bell, Y. Ephraim, and H.L. Van Trees).
B.G. Talbot, “Source coding with a reversible memory-binding probability
density transformation,” (joint work with L.M. Talbot).
7. Tian, Northwestern Polytechnical U., China, “Projection pursuit autoregression and
projection pursuit moving average.”
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2. J. Chen, U. Electro-Comm., Japan, “Wavelet transform based ECG data compression
with desired reconstruction signal quality.” (joint work with S. Itoh and T. Hashimoto).
3. W. Duanyi, Beijing U., China “Application of Markov model in mobile communication
channel.” (joint work with H. Zhengming).
4. R. Eier, Tech. U. of Vienna, Austria “Markov chains for modeling and analyzing
digital data signals.”
5. M. Foodeei, U. du Quebec, Canada “Quantization theory and EC-CELP advantages at low
bit rates.” (joint work with E. Dubois).
6. R.L. Fry, Johns Hopkins U., “Neural processing of information.”
7. J. Kogan, NYU, “The most informative stopping times for Viterbi algorithm:
sequential properties.”
8. S. Krishnamachari, U. of Maryland, “Modeling Gauss Markov random fields at multiple
resolutions,” (joint work with R. Chellappa).
9. D.E. Lake, ONR, “Detecting regularity in point processes generated by humans.”
10. T.H. Li, Tezas A&M U., “New distortion measures for speech processing,”
(joint work with J.D. Gibson).
11. Z. Li, Polytechnic U., China, “Nonparametric kernel estimation for the error density.”
(joint work with S.Z. Zou).
12. O. Mayora-Ibarra, Inst. Tech. de Estudios Sup. de Monterrey, “Neural networks for error
correction of Hamming codes,” (joint work with A. Gonzslez-Gutiérrez, J.C. Ruiz-Sudrez).
13. 1.S. Moskowitz, Naval Research Lab., “Discussion of a statistical channel,”
(joint work with M.H. Kang).
14. F. Miiller, Aachen U. of Tech., Germany, “Asymptotic performance evaluation of mismatched
vector quantizers using sub-Gaussian sources.”
15. T. Robert, ENSEEIHT/GAPSE, France, “Continuously evolving classification of signals
corrupted by an abrupt change,” (joint work with J.Y. Tourneret).
16. R.R. Snapp, U. of Vermont, “The finite-sample risk of the k-nearest-neighbor
classifier under the L, metric,” (joint work with S.S. Venkatesh).
17. L.M. Talbot, “Characteristics of a statistical fuzzy grade-of-membership
model in the context of unsupervised data clustering, (joint work with H.D. Tolley,
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Information Theory and Statistics

Tom Cover!

Depa.rtmentsbf Electrical Engineering and Statistics, Stanford University, Durand 121, Stanford, CA 94305-4055, USA,
' email: cover@isl.stanford.edu

Abstract — The main theorems in information the-
ory and statistics are put in context, the differences
are discussed, and some of the open research problems
are mentioned.

I. INTRODUCTION

Probability theory has produced a number of strong general
statements — truths about stochastics processes that give ran-
dom processes a deterministic flavor. These successes include
the strong law of large numbers, the central limit theorem, the
law of the iterated logarithm, the ergodic theorem, and limit
theorems for Markov processes.

Information theory, on the other hand, has been primarily
motivated by an attempt to optimize certain processes, for ex-
ample, to minimize the description length of random processes
or to maximize the number of distinguishable signals in the
presence of noise. This different orientation — optimization
— has led to a number of additional insights which contribute
to the body of knowledge in probability theory. For exam-
ple, the central limit theorem can be proved by way of the
entropy power inequality, yielding a monotonic convergence
to the limit. And the law of large numbers has a counterpart
in the asymptotic equipartition property, which says that all
ergodic stochastic processes can be considered as a uniform
distribution over a small set of typical sequences character-
ized by the entropy rate.

I1I. SPECIFICS

We will demonstrate some of the points of intersection of
information theory and statistics, and mention some problems
in physics and computer science that require a rigorous prob-
abilistic treatment.

The discussion will include the following:

1. Chernoff information, error exponents, large deviation

theory.

2. The geometry of information.

3. Structure of ergodic processes, the AEP and the Slepian
Wolf theorem.

4. The common basis for the Cramer-Rao, entropy power,
Brunn-Minkowski, and Heisenberg uncertainty inequal-
ities. (See Dembo.)

5. Entropy rate (compressibility limits), channel capacity
(distinguishability limits). The duality of the two.

6. The central limit theorem and the entropy power in-
equality. (See Barron.)

7. Information loss and the second law. The argument
that entropy will be lost when mass is thrown into a
black hole, together with the even stronger belief that
entropy increases (the second law of thermodynamics),
led Beckenstein and Hawking to argue that the mass of

1This work was partially supported by NSF Grant NCR-9205663
and JSEP Contract DA AH04-94-G-0058.

the black hole (which increases when matter is thrown
into it) is proportional to its entropy (the logarithm of
the number of ways in which it could be made) thus
preserving the second law.

8. Entropy increase. The H theorem in statistical mechan-
ics shows that entropy increases with time. But the laws
of physics are time reversible. What is going on?

9. Investment processes. Duality with data compression.

III. REMARKS

Certain theorems from information theory like the
asymptotic equipartition property (the Shannon-MacMillan-
Breiman theorem) may deserve to be considered part of the
hard core of probability theory. Yet other results in infor-
mation theory like the entropy power inequality turn out to
play an important role in interpreting the central limit the-
orem. And finally, some of the tools in information theory
may have important roles to play in physics, just as ergodic
theory, developed in the 1930s, resolved some of the problems
in statistical mechanics.

ACKNOWLEDGEMENTS
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Bayes risk-weighted vector quantization

Robert M. Gray?
Department of Electrical Engineering, Stanford, CA 94305-4055

Abstract — Lossy compression and classification al-
gorithms both attempt to reduce a large collection of
possible observations into a few representative cato-
gories so as to preserve essential information. In this
talk a recently developed framework for combining
classification and compression into one or two quan-
tizers is described along with some examples and re-
lated to other quantizer-based classification schemes.

The object of classification is to map an observed vector
into one of a finite collection of indices representing a class
or type of data. For example, one might view a block of pix-
els in a digital mammogram and wish to classify the block
as containing a microcalcification or not. The quality of of
the classifier is typically measured by its average Bayes risk.
Another important attribute of the classifier is its complexity,
how hard it is to convert the observed vector into the final
decision. The object of vector quantization is to map an ob-
served vector into one of a finite number of representatives or
templates. Here quality is typically measured by an average
distortion such as squared error. Instead of complexity, the
second parameter of primary importance is typically bit rate,
measured either by the log of the number of templates or by
the entropy of the quantizer output.

Classification and compression can both be viewed as a
quantization operation, mapping a possibly continuous space
into a finite one. The measures of quality differ, but both
Bayes risk and squared error can be viewed as a form of dis-
tortion to be minimized subject to constraints on complexity
or bit rate. Futhermore, bit rate is relevant to classification
if continuous data is quantized to prior to digital classifica-
tion, and complexity is important for compression to ensure
efficient software or hardware implementation.

Many quantizer-based classifiers have been proposed in the
literature, including classical nearest neighbor and clustered
variations [1, 2, 3]. Perhaps the most famous quantization
approach to classification is Kohonen’s “learning vector quan-
tizer” (LVQ) [4]. While codebook design differs, all use a
Euclidean nearest neighbor encoder.

An alternative approach is to incorporate explicitly a Bayes
risk term into the average distortion minimized by a quantizer
using a Lagrange multiplier and thereby include both a dis-
tortion term reflecting the general quality of the reproduction
(such as signal-to-noise ratio) and one reflecting the intended
application (such as Bayes risk or classification error). By
weighting these two components one can, in effect, optimize
for general appearance and specific task [5, 6, 7, 8, 9, 10].

Let g be a k-dimensional vector quantizer with codebook
C, partition P, encoder «, and decoder 3. Let d be a classi-
fier assigning a class label §(i) € H to each possible encoder
output ¢ = 1,..., N, producing an overall classification rule
of 7(z) = 6(a(x)). Let d denote a distortion measure such as
squared error.

Lportions of this work was supported in part by the National Sci-
ence Foundation under grants MIP-9311190, and DMS-9101548 and
by the National Institutes of Health under grant 1RO1-CA55325.

The compression performance measured by mean squared
error is

N
D(a, ) = 3 _ Eld(X, B(@)le(X) = ] Pr(a(X) = 0). (1)

i=1
The classification performance measured by Bayes risk is

M M
B(c,0) =YY CiPr(6(a(X))=kandY =j) (2

k=1 j=1

In order to simultaneously consider the compression and clas-
sification abilities of the encoder, we use a Lagrangian mod-
ified distortion expression which includes both ordinary dis-
tortion and classification error:

Jx(a,ﬂ,(s) =D(aaﬂ)+AB(a,6) (3)

This formulation leads to necessary conditions for an opti-
mal code and a generalized Lloyd iterative code design algo-
rithm, which are surveyed with examples in this talk.

REFERENCES
{1] Q. Xie, C. A. Laszlo, and R. K. Ward, “Vector quantization
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Maximum Entropy and Robust Prediction on a Simplex

H. Vincent Poor!
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA

Abstract — The related problems of (finite-length)
robust prediction and maximizing spectral entropy
over a simplex of covariance matrices are considered.
General properties of iterative solutions of these prob-
lems are developed, and monotone convergence proofs
are presented for two algorithms that provide such
solutions. The analogous problems for simplexes of
spectral densities are also considered.

1. SUMMARY

The problem of designing an optimum predictor for an ob-
served time series is, of course, a fundamental one that arises
in innumerable applications. One reason for the central role
of this problem is that the design of such a predictor is tan-
tamount to the selection of a stochastic realization model of
the time series [6], which can in turn be used in tasks such as
control, data compression, and so forth.

The classical Levinson problem - that is the finite-length
linear prediction of a covariance-stationary time series - is
a central problem within this general area. The maximum-
entropy spectrum fitting problem [8] is the counterpart of
the Levinson problem in the context of stochastic real-
ization. Both the Levinson problem and the maximum-
entropy spectrum fitting problem involve the computation of
a model/predictor for a time series from knowledge of the co-
variance structure of the series up to some finite lag, say p.

When this covariance structure is not known exactly, but
rather is known only to lie in an uncertainty class of covari-
ances, then the classical Levinson formulation for predictor
design can be replaced by a minimax robustness formulation,
as developed in several works (see [9] for a review). In this
minimax formulation, the robust predictor is the optimum
predictor designed for a least-favorable covariance structure,
chosen to maximize the spectral entropy in the time series. In
the context of model determination, the counterpart to robust
prediction is approximate stochastic realization [5).

In this talk, we consider the minimax robust prediction
problem for the situation in which the uncertainty class of co-
variances is a finite-dimensional simplex of covariance matri-
ces. As we shall note, this formulation arises naturally from
the consideration of confidence intervals for covariance esti-
mates. Moreover, solutions for such uncertainty classes can
be used as intermediate iterations for other convex uncertainty
classes, as will be discussed in the paper (see also [3]).

This talk is organized as follows (details of this work can
be found in [10]). First, we review briefly the problems
of finite-length minimax robust prediction and maximum-
entropy spectrum fitting, and in particular we note that both
problems have essentially the same solution. We also pro-
vide necessary and sufficient conditions for solutions to these
problems over general uncertainty classes and over simplexes.
Next, general properties of iterative solutions to these prob-
lemns are presented. In particular, the convergence of a series

1This work was supported by a UK SERC Senior Visiting Fel-
lowship at Imperial College, London.

of entropies to the maximum entropy is shown to be equivalent
to convergence of the corresponding covariances and predic-
tors. Two iterative algorithms for maximizing entropy over
a simplex are then developed, together with proofs of their
monotone convergence. One of these algorithms generalizes
Nelson’s algorithm for solving mimimax decision problems [7],
and the other is similar in approach to the Arimoto-Blahut al-
gorithm of information theory [1, 2]. Finally, we consider the
analogous problem for infinite-length prediction (i.e., p = o0),
in which the covariance structure is specified in terms of an
(uncertain) spectral density. Results analogous to those of for
the finite-length case are developed, and it is noted that this
infinite-length version of the problem is identical mathemat-
ically to an optimization problem arising in portfolio theory

[4].
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Fisher Information, Stochastic Complexity, and Universal Modeling
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Abstract — The main objective in universal mod-
eling is to construct a process for a class of model
processes which for long strings, generated by any of
the models in the class, behaves like the data gener-
ating one. Hence, such a universal process may be
taken as a representation of the entire model class
to be used for statistical inference. If f(z") denotes
the probability or density it assigns to the data string
¢" = 1,...,Tn, then the negative logarithm —log f(z"),
which may be viewed as the shortest ideal code length
for the data obtainable with the model class, is called
the stochastic complezity of the string, relative to the
considered model class. Unlike in related universal
modeling, where the mean code length is sufficient,
we also need an explicit asymptotic formula for the
stochastic complexity. This is because it permiis a
comparison of different model classes by their stochas-
tic complexity in accordance with the MDL (Mini-
mum Description Length) principle.

The MDL principle for model selection and statis-
tical inference in general is founded on the idea that
the strength of the constraintsin the data, imposed by
the models, can be measured by the code length with
which the data can be encoded, when advantage is
taken of the constraints. This gives a data dependent
criterion, which for its justification does not require
the untenable assumption that the observed data are
generated by some distribution. Hence, instead of
minimizing a distance between the fitted models and
the nonexisting ‘true’ distribution we just search for
the model or model class that minimizes the code
length.

The main problem in the implementation of the
principle is how to estimate the shortest code length
for the data, given a suggested model class. This can
be difficult requiring ingenuity and hard work if the
class of models is complex. Frequently a complex
model class is built up of simpler ones, each fitted
to a portion of the data, so that the total code length
can be composed of the stochastic complexities of the
components, and this again makes a formula for them
useful. The seminal case is the class consisting of just
one discrete distribution P(z"), for which the Shannon
information — log P(¢") may be taken to represent the
shortest (ideal) code length among all prefix codes for
a data sequence of a fixed length in the sense of the
noiseless coding theorem; ie, in the mean.

The most important classes of models for which we
can derive formulas for the stochastic complexity are
of the type M, = {f(z"|6)}, or M = U, My, each model
indexed by a parameter vector ¢ = f1,...,0; and satis-
fying the marginality condition for a random process.
If the model class M; is such that the maximum like-
lihood estimates satisfy the Central Limit Theorem
for densities for each 4, an extention of the noiseless

coding theorem states in broad terms that no pro-
cess or, equivalently, code exists for which the mean
lengths with respect to f(z"|f) for the various values
of § are shorter than the corresponding mean values
of the stochastic complexity

k

—Iln f(z"]6(=™)) + 31 % + ln/ |1(6)|*d6 + o(1),

except for § in a negligible subset. Here, f(z") de-
notes the maximum likelihood estimate, and |I(f)] is
the Fisher information. Moreover, this ideal code
length up to terms of size o(1) is given by the neg-
ative logarithm of

oy fEli)
&) = T mlbem)da

special cases of which were introduced and studied in
[1] and [2]. The code length just given has the addi-
tional optimality properties for universal coding; [1],
[3], that strengthen its distinguished status. The ex-
tension of the stochastic complexity formula to the
larger family M = |J, M, is straightforward, and for
a large subclass of finite alphabet Markov processes
an efficient recursive implementation of the associated
universal process is possible, [4]. However, the further
extension to the case where the data generating pro-
cesses are taken as nonparametric, residing in a suit-
able closure of the class M, poses difficulties. Some
progress towards evaluating the redundancy has been
made in [5] and [6]; for related results see also 7.
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Abstract — Signal expansions play a key role in prac-
tical compression schemes, from audio/image/video
coding standards to current adaptives bases. Recent
developments, especially related to wavelets series ex-
pansions, are reviewed, and current work on “best
bases” is discussed.

I. INTRODUCTION

Transform coding, together with predictive coding, is a key
technique used in many practical compression systems. Its
foundation is based on the Karhunen-Loéve transform, which
is the optimal transform under certain constraints [3]. In prac-
tice, approximations like the discrete cosine transform (DCT)
are used, both for computational efficiency, and the fact that
it is signal independent but still efficient for many practical
signals. The transform coefficients are then quantized (usu-
ally in a scalar fashion) and entropy coded. This three block
system [transform, quantization, entropy coding] raises some
interesting questions:
- what are the best, possibly adaptive, transforms?
- what is the interplay of the three components?
- can successive approximation or multiresolution be effi-

clently achieved?

Recently, wavelets and their generalizations have appeared
as alternatives to the more classic Fourier and DCT expan-
sions [2]. In particular adapted expansions, and related algo-
rithms to find the best bases, are an interesting extension.

II. WAVELET SERIES EXPANSIONS
Classically, windowed Fourier transforms have been used to
obtain time-frequency representations of signals, and such rep-
resentations are useful for source coding as well. Alternatively
to local Fourier transforms, wavelet series have gained popu-
larity. In this case, a particular prototype “mother” wavelet

¥(t) is used to genmerate an orthonormal basis {¥m (1)} for
L2(R) by shifts and scales

A main difference between local Fourier expansions and
wavelet series is that they provide a different tiling of the
time-frequency plane. For example, at high frequencies or
small scales, the wavelet is very sharp in time and acts like a
mathematical microscope. In discrete-time, subband coding
and filter banks permit the computation of sampled equiva-
lents of local Fourier and wavelet transforms [7].

III. ApAPTIVE BEST BASES
Obviously, short-time Fourier transforms and wavelet series
are only two out of a myriad of possible useful tilings. In par-
ticular, wavelet packets [1] and their time-varying generaliza-
tions [4] provide signal adaptive orthonormal bases. When the
basis selection criterion is based on operational rate-distortion,
we effectively have an adaptive transform coding algorithm,

1This work was supported by grant NSF MIP-93-21302.

where quantization and entropy coding are included in the
cost function. Since such transforms are adapted on the fly,
computational efficiency is a must. In [4], a tree based prun-
ing algorithm is used, while in {8] a dynamic programming
procedure is applied.

IV. OVERCOMPLETE REPRESENTATIONS

While orthonormal bases have many desirable properties as
expansions for compression, a major drawback is their lack of
shift-invariance. Overcomplete representations or frames over-
come this problem, but the redundancy hurts compression. A
recent result from oversampled analog to digital conversion [6]
indicates that fine quantization in an orthonormal basis can
be traded for coarse quantization in an overcomplete repre-
sentation. Then, we discuss the use of matching pursuits [5]
for compression applications. In matching pursuit, a very re-
dundant dictionary is used together with a greedy algorithm
to find a best approximation to a given signal. Choices of
dictionaries and applications in video coding are considered.

V. CONCLUSION
A survey of signal expansions in the context of transform-
type coding was given, with an emphasis of wavelets, adaptive
and overcomplete representation. Expansions that adapt to
the signals to be coded are a step towards universal transforms
for compression. ’
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Large Deviations in Information Theory and Statistics
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Abstract

Large deviations theory, a branch of probability theory
that deals with estimates of probabilities of very rare
events has close links with topics in information theory
and in statistics. We shall explore some of these connec-

tions.

A sequence {1} of Borel probability measures on X’ satis-
fies the large deviations principle (LDP) with a rate function
I: X —][0,00] if

UBD:
lim sup p/™(F) < exp(— igg I{z)) VF closed

n—oo

LBD:
liminf /™ (G) > exp(— inf I(z)) VG open

and [0, a] are compact sets for every a < co. A sequence of
r.v. is said to satisfy the LDP if their laws satisfy the LDP. The
similarity of the LDP and the definition of weak convergence
of probability measures is apparent.

Indeed, the theory of large deviations is soon reaching the
state of maturity of weak convergence (for example, the texts
[1,2,3] are dedicated to the former). However, from an appli-
cation point of view these two theories serve complementary
purposes. While weak convergence sheds light on the center of
the distributions pr, (i.e. events A for which p,(A) is bounded
away from zero), large deviations theory deals primarily with
the tails of pn.

Perhaps the most known LDP is Sanov’s theorem, [1, Sec.
6.2], stating that for i.i.d. I-valued random variables {X:}:
each distributed according to g, their empirical measures L, =
L 5y | 8z, satisfy in M1(Z) (= space of Borel probability
measures on ¥) the LDP with rate function H(:|u). Here
H(:|) stands for the relative entropy (also known as the KL
divergence or cross entropy),

H(v|p) = {fz flog fdu %% = f, exists
00 otherwise

Sanov’s theorem provides a clue to some of the links explored
in this talk, namely:

(a) The method of types, introduced in Information Theory
(c.f. [4,5]), allows one to prove Sanov’s theorem when ¥
is a finite set and goes much beyond this simple setup.

(b) The decisive role of the relative entropy in Sanov’s the-
orem is exemplified in the use of information inequali-
ties to prove statements about conditional laws (c.f. [6]).
The notions of sufficient statistics and of universal prior
are closely related to these conditional laws.

(c) Sanov’s theorem yields the asymptotics of probability
of error in the Hypothesis Testing problem (c.f. {1, Sec.

3.4)).

(d) The map v + f zdv : M (Z) — I contracts Sanov’s
theorem to Cramer’s theorem dealing with the LDP for
the empirical means S, =1 3°"  X;. The correspond-
ing result for weakly dependent X; (Géartner-Ellis the-
orem) provides a large-deviations-based proof of Shan-
non’s (noisy) source coding theorem (c.f. {1, Sec. 3.6]).

Time permitting, other relations to be discussed are the
use and value of large deviations in non-parametric and/or
sequential statistics problems, in certain (practical) commu-
nication theory problems (c.f. [7]), and in the study of fractal
measures and sets.
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The Entropy Strategy for Shape Recognition

Donald Geman

1

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA

Abstract —

We consider a computational strategy for shape
recognition based on choosing “tests” one at a time
in order to remove as much uncertainty as possible
about the true hypothesis. The approach is compared
with other recognition paradigms in computer vision
and illustrated by attempting to classify handwritten
digits and track roads from satellite images.

I. Overview

We explore the possibility of recognizing shapes “simply”
be asking the right questions in the right order. In the abstract
formulation, we are given a finite list of possible “hypotheses”;
exactly one of these is true and we wish to decide which it is
based on the results of various “tests” or “questions.” There
is a decision tree which instructs us how to perform the tests
and eventually classify the results. Each interior node of the
tree is assigned one of the tests and each terminal node is
assigned one of the hypotheses. The assignment of tests, the
“strategy,” is adaptive in the sense that the choice of the test
at each node may depend on the test values observed at all
preceding nodes along the same branch. Ideally, the choice
would be driven by some global measure of efficiency, such
as achieving the most accurate classifier for a given average
number of tests, or reaching the fastest decision at a given
level of accuracy. But these problems are intractable, and
we shall opt instead for the “greedy” strategy in which the
tests are chosen recursively based on minimizing the expected
entropy of the updated disribution over hypotheses given the
test results.

‘We have applied this to two problems in shape recognition,
focusing on linear, deformable structures. The raw data is a
binary or grey-level image, the tests are particular “features”
(i.e., image functionals), and the hypotheses refer to particular
shape classes or spatial positionings.

II. Roads

This application is joint work with Bruno Jedynak of
INRIA- Rocquencourt. We describe a new algorithm (2] for
tracking major roads from panchromatic SPOT satellite im-
agery, demonstrated on SPOT images of size 6000 x 8000,
representing a 60km x 80km square on the ground, in this
case in southern France.

The standard construction of decision trees (e.g., in coding,
CART (1], and machine learning) is off-line, nonparametric,
and based on “training data.” However, in our formulation of
tracking, it is impossible to pre-compute and store the entire
decision tree: it has too many branches from each (interior)
node, it is too deep (i.e., too many tests are needed to reach a
decision), and the number of possible road locations is enor-
mous. (The tests are local matched filters indexed by image
location and designed to respond to short road segments.) In-
stead, the entropy strategy is implemented on-line: each new

}This work was supported by NSF Grant DMS-9217655 and
ONR Contract N00014-91-J-1021

filter is chosen during the actual tracking based on the par-
ticular filter results previously encountered; in other words,
we only compute the branch of the tree that is needed for the
data at hand. In fact, the amount of time necessary to per-
form the tests is small compared to determining the “right”
test to perform. On the other hand, compared to maximum
likelihood estimation, the number of tests actually performed
until a decision is made is exponentially small; indeed, maxi-
mum likelihood is computationally impossible.

Our approach is also model-based rather than nonparamet-
ric. As a result, we can formulate the problem of minimizing
entropy in explicit and relatively simple analytical terms. To
execute the strategy we then alternate between data collec-
tion and optimization: at each iteration, new image data is
examined and a new entropy minimization problem is solved
(exactly) resulting in a new image location to inspect, and so
forth. This will be illustrated with a video.

II1. Digits

We shall also briefly mention another application - the
recognition of handwritten numerals - which is co-authored
with Prof. Yali Amit of the University of Chicago. There
are ten hypotheses and the strategy is again constructed by
stepwise entropy reduction, but off-line and not in the stan-
dard Euclidean framework. Instead, we construct relational
classification trees based on accumulating information about
a graphical representation of the image data involving planar
arrangements among local landmarks. Actually, we construct
many, each being a distribution-valued test. For any given
training set, there is then a fundamental trade-off between
the tree depth and tree generality; this is related to well-known
issues and tradeoffs in computational learning and computer
vision. Finally, the classification rates obtained appear to be
comparable to state-of-the-art neural networks and other non-
parametric statistical classifiers.
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Maximum entropy and related methods
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Originally coming from physics, maximum en-
tropy (ME) has been promoted to a general principle
of inference primarily by the works of Jaynes [4].

ME applies to the problem of inferring a probabil-
ity mass (or density) function, or any non-negative
function p(z), when the available information speci-
fies a set E of feasible functions, and there is a prior
guess ¢ € E. The ME solution is that p* € E which
minimizes the information divergence

p(z)
D(p | 9) = Ylp(a) log 255
For probability mass functions, if ¢ is uniform, min-
imizing (1) is the same as maximizing the entropy
H(p). This is why the method is called ME also in
general.
In typical applications, the available information
consists in linear constraints on p, i.e.,

E={p) plz

Then the ME solution p* (uniquely) exists, and

- p(z) +q(=). (1)

i=0,1,...,k}. (2

Jai(z) = b; ,

k

p*(2) = q(z)exp )9 ailz) ,
=0

3)

providing g is strictly convex and E contains any
strictly positive p. In the non-discrete case (with
sums replaced by integrals), the existence of ME so-
lution can not be asserted in the above generality,
although a unique p* always exists, possibly not in
E, such that D(p, || p*) — 0 for every {p,} C E
with D(py, || @) — inf yegD(p || g); this p* is of form
(3), cf. [1].

We will review the arguments that have been put
forward for justifying ME. In this author’s opinion,
the strongest theoretical support to ME is provided
by the axiomatic approach. This shows that, in some
sense, ME is the only logically consistent method
of inferring a function subject to linear constraints.
This approach also leads to alternatives that come

1This work was supported by OTKA Grant No.1906

into account under weaker axioms, cf. [2]. Such are
the methods of minimizing an f-divergence

Dl =S aor ) @
or a Bregman divergence
Br(pll 9) =
Zlf (=) - f(a(@) - f'(a(@)(p(z) — q(=))], (5)

where f is a strictly convex function. Minimizing
(5) leads to scale invariant inference if f = f, where
fi(t) =tlogt—t, fo(t) = —logt, fa(t) =t ifa>1
ofr @ <0, fo(t) = —t® if 0 < a < 1. Inference by
minimizing (5), particularly with f = f,, has been
suggested also in [5], based on another axiomatic
approach.

For the problem of attainment of the minimum
of (4) or (5) subject to p € E (in the non-discrete
case), there is an analogue of the result in the pas-
sage containing (3). It depends on the behavior of f
at infinity whether or not this permits to give simple
sufficient conditions for the minimum to be attained,

cf. [3].
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Abstract — The capacity of the channel induced by
a given class of sources is well known to be an at-
tainable lower bound on the redundancy of universal
codes w.r.t this class, both in the minimax sense and
in the Bayesian (maximin) sense. We show that this
capacity is essentially a lower bound also in a stronger
sense, that is, for “most” sources in the class. This
result extends Rissanen’s lower bound for parametric
families. We demonstrate its applicability in several
_examples and discuss its implications in statistical in-
ference.

In universal coding w.r.t a given class of sources the objec-
tive is to design a single code that “performs well” for every
source in the class. The sources in the class are indexed by a
variable # € A. The performance of a given code L, is judged
on the basis of the redundancy which is defined as the dif-
ference between the expected code length of L w.r.t a given
source Pp and the nth order entropy of P, normalized by the
length = of the input vector.

Two important notions of universality are the mazimin unj-
versality and the minimaz universality [1]. Gallager [2] was
the first to show that the minimax redundancy and the max-
imin redundancy are equivalent and that they are both equal
to the capacity of the “channel” whose input is # and whose
output is the random source vector X" = (X1,..,Xn). In
particular, for parametric families where 8 is a k-dimensional
vector. the minimax redundancy, and hence also the maximin
redundancy and the capacity of the corresponding channel,
was shown to be essentially 0.5k log n/n.

Rissanen [3] has strengthened the notion of universality
w.r.t parametric families by showing that 0.5k log n/n is not
only an achievable lower bound in the minimax sense, but
also a lower bound for “most” sources in the class. Here by
“mnost” sources we mean every point § except for a subset of
points whose Lebesgue measure vanishes as n grows. Rissa-
nen’s proof, however, relies heavily on the structure of the
parametric family and essentiaily the main insight that can
be gained from his work is that the redundancy is strongly re-
lated to the richness of the class, which in the parametric case
is proportional to the dimension k of the parameter vector.

It turns out thar Rissanen’s stronger notion of universal-
ity extends to the general case where the class of sources is
not necessarily a parametric family. Specifically, we show that
the Shannon capacity of the induced channel is a lower bound
on the redundancy that holds simultaneously for all sources
in the class except for a subset of points whose probability,
under the capacity-achieving probability measure, is vanish-
ing as n tends to infinity. This means that the minimax re-
dundancy and the lower bound essentially coincide for most
choices of 8. Moreover, if the capacity-achieving probability
density happens to be positive almost everywhere (Lebesgue),
as is normally the case in parametric families, the above result
holds also for most sources in the Lebesgue measure sense and
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therefore Rissanen’s result is obtained as a special case.

The proof is completely different and considerably simpler
than Rissanen’s proof [3]. However, it does not allow a free
choice of arny prior, other than the capacity-achieving prior,
that might be reasonable as well for weighting the set of points
that violate the bound. We next provide another variant of our
result which permits any prior on the index set, but then the
random coding capacity of the induced channel rather than its
Shannon capacity is obtained as a lower bound. Here the ran-
dom coding capacity refers to the normalized logarithm of the
maximum number M of randomly chosen points 01,...,01,
which form, with high probability, a set of distinguishable
sources Pa,, ..., Po,,. For most cases of practical interest the
Shannon capacity and the random coding capacity are equiv-
alent and hence the resulting bound is virtually as tight. We
believe that another advantage of this random coding capacity
result is that it may add some new insight about the relation
between redundancy and capacity. Specifically, in the proof
of this result the redundancy is linked directly, not only to
the mathematical notion of capacity as the maximum mutual
information, but also to the operational notion, i.e., the max-
imum achievable rate of reliable communication.

The results above have a broader significance in statistical
inference. In the absence of knowledge about the true under-
lying class member Pe, the statistician wishes to construct a
single universal probability measure Q that “explains well”
the data. His task is successful if @ is simultaneously “close™
to every source in the class , where distance is measured in
terms of the divergenece D(Ps||Q). In this context, our main
result is the following attainable lower bound: For all 6 € Al
except for points in a subset B C A whose probability, under
the capacity-achieving prior, vanishes as n — oc,

Po(X™
_(X’T)) > (1-€)Ca

where C,, is the capacity of the channel from 8 to X". Thus.
a necessary and sufficient condition that the statistician task
will asymptotcally succeed is that Cn/n — 0. Note that, un-
like the lossless data compression problem, this setting applies
to the continuous alphabet case as well. This point of view
provides a general framework for the choice of a statistical
model in the presence of uncertainty, which can be used for
other decision making problems as well, like universal gam-
bling, portfolio selection, and prediction.

D(Pe||Q) £ Eslog
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Bounds on Universal Coding: The Next Generation

Jacob Ziv
(Joint work with Yehuda Hershkovits)
Department of Electrical Engineering, Technion, Haifa 32000, ISRAEL

Abstract — An important class of universal encoders
is the one where the encoder is fed by two inputs: a)
The incoming string of data to be compressed. b)
An N-bit description of the source statistics (i.e. a
“training sequence”). We consider Fixed-to-Variable
universal encoders that noiselessly compress blocks of
length ¢.

Two problems will be addressed:

1. The Minimum Training-sequence length, Nmin (£):
Given a class of admissible stationary sources, find the
minimal length of a training sequence needed in order to
guarantee that any source in the given class, with an 1-th
order entropy H; < logA, will yield some compression
(A is the alphabet size).

2. An Optimal Universal Encoder (UE):

Find a UE that "ensures” that the compression for EV-
ERY source in the given class is close to the minimal
possible compression H;, once the training sequence is
longer than Npin (€).

The first case to be considered is the one where the train-
ing sequence and the incoming data string are assumed to be
statistically independent.

A Converse Theorem (solving problem (1)) and a Cod-
ing Theorem (solving problem (2)) are given for the class
of finite-alphabet stationary sources with a vanishing mem-
ory(i.e. sources that satisfy a certain mixing condition [1],
[3]).This class includes all finite-order Markov sources.

Another, perhaps more practical case is the one where the
training sequence consists of the last N bits of the data that
has been processed.(i.e. a “sliding window” algorithm).

For any stationary source P over an alphabet of A letters,
let By =[X?; : j = maz[i: P(X%; > 1/N);i=~-1,0,1,2,..]]
and define the conditional entropy Hp'(X{|X2%;) which
is monotonically decreasing with N , and satisfies H <
HY (X$|X%;) < Hy. It is demonstrated that (for large N)
the length of the training must be bigger than N, or else, for
any universal FV encoder for £-vectors there exists at least one
stationary source with H7' (X§|X%;) < R < logA for which
the compression is logA-¢ . Here ¢ > 0 and 0 < R < logA
are arbitrary and £, the length of the source words, must be
of order between loglogN and logN.Conversely, we describe a
compression scheme that yields a compression that is arbitrar-
ily close to H (X£]X2,) for every stationary source, provided
that the length of the sequence is larger than N (i.e. the length
is at least N where ¢ is arbitrarily small).

The coding theorems are based on variants of the Lempel-
Ziv data-compression algorithm [2].
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Jeffreys’ Prior Yields the Asymptotic Minimax Redundancy

Bertrand S. Clarke and Andrew R. Barron

Stat. Dept., U.B.C., 2021 West Mall, Vancouver, Canada, V6T 122 and Stat. Dept., Yale Univ. PO Box 208290, Yale
Station, New Haven, CT 06520, USA

Abstract — We determine the asymptotic minimax
redundancy of universal data compression in a para-
metric setting and show that it corresponds to the use
of Jeffreys prior. Statistically, this formulation of the
coding problem can be interpreted in a prior selection
context and in an estimation context.

L. INTRODUCTION o
Here we exploit a relationship between coding in informa-

tion theory and risk in statistics. In source coding one often
wants to minimize the redundancy of the code and in channel
coding one often wants to achieve a high rate of transmis-
sion. These two goals can be defined in terms of the relative
entropy between two distributions. The relative entropy be-
tween distributions can also be used as a loss function in a de-
cision theory context. Since, roughly speaking, a source code
corresponds to an estimator for an unknown distribution the
statistical implication is that one can seek Bayes estimators
and a least favorable prior which has desired noninformativity
properties.

I1. MAIN RESULTS
If one has data from a source distribution with density given

by pe(z™) = I}, ps(z:) where po is a member of a smooth
parametric family and one has a continuous density w on the
parameter space then the Bayes code achieves the minimum
of the Bayes redundancies [ w(8)D(pg||gn)d6 over all distri-
butions ¢, where D is the relative entropy. The Bayes redun-
dancy for a code is the same as the Bayes risk for the estimator
corresponding to that code. Thus, the Bayes code is based on
the mixture density m(z") = fw(G)pe(z")dG. Equivalently,
m can be regarded as a Bayes estimator, with risk D(pp||mn»),
and Bayes risk f w(8)D(py||mn)df. Maximizing the Bayes re-
dundancy over choices of w gives the maximin redundancy, or
maximin risk. One can therefore identify a maximin estima-
tor or a maximin code, formed from the mixture distribution
with respect to the choice of w achieving the maximal Bayes
redundancy.

Alternatively, one might seek a code or estimator which
minimizes the worst case redundancy. Game theory suggests
that such a minimax procedure will be the same as the max-
imin procedure. This turns out to be the case and one can
identify a least favorable prior w.

Our main results, see [3], are as follows. First, the redun-
dancy of the Bayes code i.e., the risk of the Bayes estimator
My 18

[1(6)]

—w_(W
uniformly for # in compact sets K in the interior of the pa-
rameter space, where I(6) is the Fisher information matrix.
Second, the Bayes redundancy of the Bayes code, i.e., the
Bayes risk of the Bayes estimator is

= +log +o(1),

27e

R,(8,w) = glog

—Mdb’ +o(1).

w(#)log e

d n

K
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Third the asymptotic minimax redundancy, i.e., the minimax
risk is

R, = glog 5’7’; +log/ VI1(8)ld6 + o(1) = R},
K

where R} is the maximin redundancy, or the maximin risk.

Finally, the least favorable prior is seen to be Jeffreys prior

given by |1(8)|*/?/ fK |1(8)]'/2d8, see [5]. With this choice the

redundancy, or risk, achieves asymptotically the same value

Rn(6, w) = Ry, uniformly for 6 in compacta interior to K.
The associated codelength takes the form

1 d n
+ ~1lo ——+lo/ I(8)|d8 + o(1
s+ Sloa g log | T8 +o()

where 6 is the maximum likelihood estimator see [4]. This
mixture codelength has been suggested for use in a suitable
formulation of the minimum description length principle for
model selection, see [1], [6).

1
log m(o) = log

I11. IMPLICATIONS

This least favorable prior has an interpretation in chan-
nel coding. The Bayes risk R.(w) is the Shannon mutual
information 7(©; X™). This corresponds to the channel in
which 6 is sent to n receivers who decode the message z”
together. Asymptotically, the source achieving the channel
capacity, maxy I(©; X"), is Jeffreys’ prior.

In statistics, the distribution achieving the maximal mutual
information is called a reference prior. The results for contin-
uous parameters provide formal verification of a conjecture
in [2], that in the absence of nuisance parameters, reference
priors are Jeffreys priors. Equivalently, one can write the mu-
tual information as EmD(w(-|X™)|lw(})). The w maximizing
this quantity asymptotically gives a posterior as far as possi-
ble from the prior on average. That is, it is the prior which
leaves the most to be learned from the data and so represents
minimal informativity.
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Lower Bounds on Expected Redundancy

Bin Yu
Department of Statistics, University of California, Berkeley, CA 94720-3860, USA

Abstract — This paper focuses on lower bound re-
sults on expected redundancy for universal compres-
sion of iid data from parametric and nonparametric
families. Two types of lower bounds are reviewed.
One is Rissanen’s almost pointwise lower bound and
its extension to the nonparametric case. The other is
minimax lower bounds, for which a new proof is given
in the nonparametric case.

I. INTRODUCTION

One important ingredient of Rissanen’s Stochastic Com-
plexity theory is his (almost) pointwise lower bound on ex-
pected redundancy for regular parametric models (cf. [4]),
and a minimax counterpart follows from [2]. By expressing
expected redundancy in terms of accumulated expected pre-
diction errors, a similar lower bound was proved in [5] and [7]
on expected redundancy for a smooth nonparametric class of
densities. This lower bound was shown in two different senses:
one extending the parametric pointwise bound to an “artifi-
cial” parameter space with a dimension depending on the sam-
ple size ([5]), and the other in the minimax sense ([7]). In this
paper, we review these lower bounds and the methods used to
prove these lower bounds. Finally we provide a new proof for
the lower bound in the nonparametric case. This new proof
is information-theoretic, bypassing the detour to accumulated
prediction errors, although we do borrow calculations from the
density estimation literature.

II. RiSSANEN’S LOWER BOUND AND ITS
NONPARAMETRIC EXTENSION

For a given iid data string z1, z2,...,Zn and without know-
ing the distribution f which generated the data, we would like
to compress the data in an efficient way. When f(z) = f(z|6)
belongs to a smooth k dimensional parametric family such
that the parameter 8 can be estimated at the n~Y/? rate, Ris-
sanen [4] showed that we need at least H(f) + £82 bits
per data point, asymptotically. This lower bound holds in
expectation and it holds for almost all parameter values in
the parameter space. With a prefix code achieving this lower
bound, Rissanen justified that §I—°§1—’l can be viewed as the
coding complexity measure of the model class.

When f is known to be in the smooth nonparametric den-
sity class of bounded derivatives on [0,1}, a complexity rate
measure of n~2/® was established in [5] by embedding the non-
parametric class in a parametric class of dimension of order
n'/%/logn. This embedding reflects the fact that a smooth
nonparametric class is in essence a parametric class.

III. THE MINIMAX LOWER BOUNDS

Through the minimax theorem (cf. [3] ), the minimax ex-
pected redundancy over a parametric class is equivalent to the
maximum of the Bayes redundancy which is the same as the
mutual information. Fortunately, for a given prior, the Bayes
code is the mixture density with respect to that prior and the
first term in the expansion of the Bayes redundancy or mutual
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information is obtained in [2] to be the Rissanen coding com-
plexity of %l—gﬁﬂ Hence this complexity measure also serves
as the minimax lower bound on expected redundancy.

For the nonparametric class mentioned above, the minimax
theorem still holds; therefore any Bayes redundancy or mutual
information provides a lower bound. However, no prior seems
to exist on the whole density class for which the Bayes redun-
dancy can be approximated analytically. On the other hand,
the expected redundancy is simply the accumulated prediction
or estimation error in terms of Kullback-Leibler divergence,
and techniques have long been developed to obtain minimax
lower bounds on density estimation errors in the nonpara-
metric case, cf [6]. By lower bounding the divergence by the
Hellinger distance and borrowing Assouad’s technique, a min-
imax rate lower bound of n~2/% was established in [7].

Note that in applying Assouad’s technique, one does not
calculate the Bayes estimation error over the whole class, but
only over a conveniently chosen hypercube sub-class, and the
Bayes estimation error over this sub-class provides a lower
bound on the minimax estimation error. It turns out that
this detour to accumulated prediction or estimation error is
not necessary since we can use the hypercube sub-class di-
rectly with the redundancy. Using a result from the density
estimation literature ([1]), it can be shown that n=2/3 gives
the rate in a lower bound. Thus we obtain a new proof for the
minimax rate lower bound in [7], and this new line of proof
applies to other smooth classes of densities.

Superficially, the proof in the parametric case has a con-
tinuous flavor since it relies on nice continuous priors on the
whole parameter space, whereas the proof in the nonpara-
metric case has a discrete flavor because of the hypercube
sub-class it relies on. In essence, however, the former is also
discrete since the continuous prior can be replaced by a dis-
crete uniform prior sitting on a grid sub-set of the parametric
space, as long as the grid-size is of the order or smaller than
n~1/2. Note that the nearest neighbors on the hypercube also
have Hellinger distances of order n~1/?_the rate at which n
iid data points can possibly distinguish two distributions.
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When is the weak rate equal to the strong rate?

Paul C. Shields!
Mathematics Departments, U. of Toledo, Toledo, OH 43606, and Eotvés Lorand University, Budapest.

Abstract — A condition on a class of processes guar-
anteeing that the weak redundancy rate has the same
asypmtotic order of magnitude as the strong redun-
dancy rate will be discussed.

I. INTRODUCTION
In recent papers, examples were constructed showing that
there is no nice weak redundancy rate for various subclasses
of the class of ergodic processes, [1, 2, 3]. In each of these it
was shown how to find a process in the class whose n-th order
reduncancy was large, then it was shown how to make small
changes to produce a process whose m-th order redundancy
was large, for some m > n. A suitable passage to a limit
then produced the desired example. The two essential features
were the existence of processes with large redundancy in a
neighborhood of any member of the class and a completeness
property to insurance the existence of a limit. The purpose of
this talk is to formalize these two features, in order to clarify

the prior constructions and extend them.

1I. NOTATION AND TERMINOLOGY.

The (expected) redundancy of a prefix n-code Cy, relative
to a process P, is defined by

R(Cn|P) = E(L,|P) - Ha(P),

where E(Ly|P) is expected code length and

Ha(P) =~ _ P(a})log P(a]),

is the n-th order entropy of P. The minimax expected redun-
dancy for a class S of stationary processes with alphabet A is
defined by
Rn(S) = min max R(C,|P),

where the minimum is over all binary prefix n-codes.

A sequence {C,} is called a prefix-code sequence if Cr is
a binary prefix n-code, for each n. A nondecreasing function
n — p(n) is called a strong rate for the class S if there is a
constant M such that Rn(S) < Mp(n), » > 1, and if, for any
prefix-code sequence {Cr} and any function ¢(n) = o(p(n)),
there is a member P € S such that R(Cn|P)/é(n) is un-
bounded.

A nondecreasing function n — p(n) is called a weak rate
for the prefix-code sequence {Cr} on the class § if for each
P € S there is a finite number M = M(P) such that

)]

and if, for any prefix-code sequence {Cn} and any func-
tion ¢(r) = o(p(n)), there is a member P € S such that
R(Cn|P)/¢(n) is unbounded. (Note that weak rates allow the
constant M to depend on P.)

Rn(C"Iu) S Mp(n), n _>_ 17

1Partially supported by NSF grant DMS-9024240 and MTA-NSF
project 37.

Let d(P, Q) be a metric on a class S of stationary processes,
and let Ne(P) = {Q € S: d(P,Q) < ¢} denote the € neigh-
borhood of P. The metric space (S, d) is called locally rich if
N(P) and S have the same strong rate, for every PeSand
¢ > 0. The following theorem will be proved.

I11. THE WEAK-RATE/STRONG-RATE THEOREM.

If S has a locally rich, complete melric d such that d-
convergence implies weak convergence and convergence in en-
tropy, then the weak rate and strong rates for S are the same.
Proof: Select P € S such that d(P™tV, P™¥) < §;, and
such that R(C,,(;)|P"(‘)) > M;é(n(5)), 7 £ 4, where Mi — oo,
and ) ;i < oo.

IV. SUMMARY TABLE.

Class Strong rate | Weak rate
iid. logn logn
Markov (k) logn logn
Finite state (M) logn logn
Renewal nt/? nt/?
M-Renewal (k) nkHD/(R+2) | p(k+1)/(k+2)
Regenerative n n
B-processes n n
Ergodic processes n n
Ux Markov (k) n log n
Finite state n logn
Renewal/finite nll? logn
M-Renewal (k)/finite p(kHD/(k+2) logn
Regenerative/finite n logn
Ux M-Renewal (k) n n/logn*

Class/ finite = finitely many waiting times.
*-upper bound only.

Metrics:

1. Markov (k): (k + 1)-order variational distance.

2. Renewal: d(P,Q) = Y t|P(t) — Q(t)|, where P(t) =
probability that waiting time is .

3. Regenerative:
D(P,Q) = d(P, Q)+, Xt |1P:(a)) P(1) = Q:(a1)Q(1)],
where P, = t-order distribution given that waiting time
is t, and d(P, Q) is the renewal distance.

4. B-processes: d-metric.

5. Ergodic processes: f-metric.
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Variable-rate, Lossy, Tree-structured Codes and Digital Radiography

Richard A. Olshen

Division of Biostatistics, Stanford University School of Medicine, Stanford, California 94305-5092
olshen@playfair.stanford.edu

Abstract — My talk is a survey of binary tree-
structured methods for clustering as they apply to
predictive, pruned, tree-structured vector quantiza-
tion (predictive PTSVQ). Much of the material con-
cerns applications of PTSVQ to the lossy coding of
digital medical images, especially CT and MR chest
scans. There is a brief introduction to the asymp-
totic properties of the algorithms and to the attempt
to understand variability and covariability of amino
acids in the V3 loop region of HIV. The research has
been collaborative with many others over a five year
period.

The algorithms involve successively partitioning the range
of a set of pixel vectors X, and can be viewed as successive
two-means clustering. When X € R* the partitioning is by
hyperplanes; qualitative data can be handled, too, as in the
application to HIV amino acid sequences. Results are sum-
marized by a binary tree; a pixel vector X" to be coded is
passed from the root node successively to a terminal node (t).
The codeword assigned is simply a suitably defined centroid
of learning sample X values at t. The bit rate is the average
depth of the tree. Splitting is always “greedy, ” in senses to be
described. We grow an initial tree larger than we intend to use
and prune it back to smaller ones. Every subtree of the large
initial tree has its own figure of merit and assigned “penalty”
for complexity. For a given penalty, there is a unique smallest
pruned subtree of the cited initial large tree that is optimal
in terms of figure of merit. As the penalty increases, the se-
quence of optimally pruned subtrees is nested. Codes that
correspond to the sequence of optimally pruned subtrees are
thus seen to have a natural progressive property.

Versions of these algorithms can be shown to be “consis-
tent” [4] in a sense to be described. Part of the argument
involves showing that the algorithm terminates when it is ap-
plied with a bit rate constraint to a fixed absolutely contin-
uous distribution with compact support. Next, a continuity
property is established relative to a fixed, convergent sequence
of distributions. Finally, aspects of empirical processes are
brought to bear upon the large sample behavior of the algo-
rithm when the learning sample is, beyond the cited assump-
tions, stationary and ergodic.

Applications of PTSVQ to problems of data compression
in digital radiography [1-3, 6] are reported. One set of prob-
lems involved the detection of lung lesions and mediastinal
adenopathy from 12 bit per pixel (bpp) original CT images.
The pixel intensities coded were not those of the original im-
ages, but rather of the residuals when pixel blocks are pre-
dicted by a simple Wiener-Hopf technique from previously
encoded blocks. (See [5] for improvements that involve seg-
mentation, increasing the memory of the predictor, and ridge
regression.) Thirty images of each type were compressed to
six different levels. Three radiologists then used the original
and compressed images for diagnosis. We quantify outcomes
by sensitivity (the chance an object is detected given that it
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is there) and predictive value positive (the chance that a de-
tected object is actually there). Presumably larger bit rates
are better, though the data do not bear this out for bit rates
more than 2 bpp. Plots of cutcome versus bit rate are fit
by quadratic splines with a single knot and surrounded by
bootstrap-based simultaneous confidence regions. On the ba-
sis of various analyses of the data we conclude that images
can be compressed to bit rates between one and two bits per
pixel without significant loss of diagnostic accuracy. From a
different clinical study we have concluded that MR chest scans
originally 9 bpp and used for measuring vessels in the chest
can be compressed to .55 bpp without apparent loss of clinical
accuracy [6]. Radiologists seem to like somewhat compressed
images better than they like the originals [3].
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Greedy Growing of Tree-stuctured Classification Rules Using a
Composite Splitting Criterion

Andrew B. Nobel®

Abstract — We establish the Bayes risk consis-
tency of an unsupervised greedy-growing algorithm
that produces tree-structured classifiers from labeled
training vectors. The algorithm employs a composite
splitting criterion equal to a weighted sum of Bayes
risk and Euclidean distortion.

[. INTRODUCTION

Binary trees play an important role in the methodology
of Statistics and Information Theory. Classification trees are
used in a wide variety of statistical problems; tree-structured
vector quantizers provide an efficient and effective means of
compressing images.

A critical problem in practice is how to design a good tree-
structured classifier or quantizer from a finite data set. Greedy
growing algorithms [1,2,3] produce suitable trees one node at a
time, optimizing a specified splitting criterion at each step. In
spite of their empirical success, there has been little theory to
support the unsupervised use of greedy growing algorithms, or
to examine the behavior of such algorithms on large training
sets.

We establish the Bayes risk consistency of an unsupervised
variant of the CART [2] algorithm. The algorithm, which em-
ploys a composite splitting criterion equal to a weighted sum
of Bayes risk and Euclidean distortion, is motivated by re-
cent work [1] on the design of joint quantization/classification
schemes. Variance of the classifiers is controlled by limiting
the number of splits, rather than by pruning an ‘overgrown’
tree.

II. DEFINITIONS

A tree-structured partition is described by a pair (T,«)
where T is a binary tree and o : T — IR assigns a splitting
vector to every node of T. Let T' denote the terminal nodes
of T. Each vector z € IR? is associated with a member of T
through a sequence of binary comparisons that trace a path
through T: beginning at the root, and at each subsequent in-
ternal node, z moves to that child of the current node whose
label is nearest to z in Euclidean distance. (A tie-beaking
scheme may be used to avoid ambiguities.) Let V; be the set
of vectors = whose path contains the node t. Then each V;
is a convex polytope, and the the collection {(Vi:te T} is a
partition of R

Let (X,Y) be jointly distributed random variables with
X ¢ RY Y € {0,1}. A tree-structured classifier-quantizer
(TSCQ) is described by a four-tuple (T, e, B,7), where (T, @)
is a tree-structured partition as above, f : T — IR® assigns
a vector representative to each ¢t € T, and v : T — {0,1}
assigns a class representative to each ¢ € T. (The four-tuple
above will be abbreviated by T.) The triple (T, 3) defines
a tree-stuctured vector quantizer Qr = Zterﬂ ®I{z € Vi}

1 Andrew Nobel is with the Department of Statistics, University
of North Carolina, Chapel Hill. He is currently on leave at the
Beckman Institute, University of Ilinois, 405 N. Mathews, Urbana,
IL 61801.
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by assigning a vector representative to each element of the
partition {V; : t € T}. Similarly (7, e,v) defines a tree-
structured classification rule Cr = Ztei‘ v()I{z € Vi}.
Let D(T) £ E|X — Qr(X)|* be the distortion of Qr and
R(T) & P{Cr(X) # Y} the Bayes risk of Cr. Follow-
ing [1], for A € [0,1], we define the composite risk I'\(T) =
AR(T) + (1 = A)D(T).

I1I. GREEDY GROWING

Fix a TSCQ T and let t € T. For each hyperplane L that
intersects V;° we may define an augmented tree T =1(@1L)
as follows: add children %3, to t and select a(t1), a(tg) eVi
such that L is their perpendicular bisector; for ¢ = 1,2
let ,B(t) be the Euclidean centroid of Vi, and let (%) =
argmin, P{Y = 6|X € Vi, }- In this way D(T) < D(T) and
R(T) < R(T), so that T'A(T) < TA(D).

A training sequence Sn = {(X1,Y1),...,(Xn, Ya)} consists
of n independent replicas of (X,Y). Given S, and an it-
eration count kn the greedy growing algorithm produces a
nested sequence To < Ti < ... £ Tk, of TSCQ’s. The ini-
tial tree Tp consists of a single root node to with a(t,) arbi-
trary, ,B(to) =1/n}_ X;, and ¥(t,) the majority vote among
{Yi : 1 <i < n}. Given Ty, the a.lgorlthm selects a terminal
node t* € T and a hyperplane L” to minimize TA(T+(t, L)),
and then sets Tr41 = Tr(¢*, L*). All quantities are computed
with respect to the empirical distribution of S. The output
of the algorithm is Tk, .

IV. RESULTS
Let R* = inf P{C(X) # Y}, where the infimum is taken
over all classification rules C : IRY — {0,1}. Unpruned classi-
fication trees produced by greedy growing are Bayes risk con-
sistent if Euclidean distortion is given a non-zero weighting in
the composite risk.

Theorem 1 Let A < 1 and suppose that the marginal distri-
bution of X has a density such that E||X|* < oco. For each
n > 1 let T,, be produced by applying the greedy growing algo-
rithm to the training sequence Sy, for kn steps. If (i) kn — o0
and (ii) nk,logn — 0O then R(Tn) — R* with probability
one as n — 0.
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Tree-Structured Clustered Probability Models for Texture

Rosalind W. Picard and Kris Popat!
‘The Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Abstract — A cluster-based probability model has
been found to perform extremely well at capturing
the complex structures in natural textures (e.g., bet-
ter than Markov random field models). Its success is
mainly due to its ability to handle high dimension-
ality, via large conditioning neighborhoods over mul-
tiple scales, and to generalize salient characteristics
from limited training data. Imposing a tree structure
on this model provides not only the benefit of reduc-
ing computational complexity, but also a new benefit
— the trees are mutable, allowing us to mix and match
models for different sources. This flexibility is of in-
creasing importance in emerging applications such as
database retrieval for sound, image and video.

! This work was supported in part by NEC Corp. and HP Labs.
We thank Tom Minka for discussions on merging models using trees.
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Nonparametric Classifier Design Using Vector Quantization

Qiaobing Xie, Rabab K. Ward and Charles A. Laszlo
Dept. of Electrical Eng., Univ. of British Columbia, Vancouver, B. C., Canada V6T 174

Abstract — VQ-based method is developed as an effec-
tive data reduction technique for nonparametric classi-
fier design. This new technique, while insisting on com-
petitive classification accuracy, is found to overcome the
usual disadvantage of traditional nonparametric classi-
fiers of being computationally complex and of requiring
large amounts of computer storage.

1. INTRODUCTION

A solution to the excessive complexity problem of traditional
nonparametric classifiers is to reduce the size of design set
while insisting that the classifiers built upon the reduced de-
sign set should perform as well, or nearly as well as the
classifiers built upon the original design set. This idea has
been explicitly explored in the development of many classi-
fier design algorithms using reduced sample sets. However,
for very large design sets, these methods are often tedious
and difficult to implement, and the final reduction rate is
usually low [1]. _ '

We introduce a new approach for nonparametric data re-
duction using the vector quantization technique. Combining
vector quantization with the classical Parzen’s kernel and
the kNN approaches, we develop two new algorithms of re-
duced nonparametric classifier design, which we shall denote
the VQ-kernel and the VQ-kNN methods.

II. DEVELOPMENT OF V(Q-BASED
NONPARAMETRIC CLASSIFIERS

The philosophy guiding the development of most traditional
nonparametric classification methods is that of using the
statistical information contained in a set of pre-classified
samples (or design set), for finding a good approximation
of the actual underlying probability density function, p(x).
Then the classifier is built by applying the Bayesian rule.
However, for achieving high classification performance, this
approximation to p(x), while it is obviously sufficient, is not
necessary. For example, any good approximation to [p(x)]%,
where constant o > 0, will achieve the same Bayesian
classifier as that achieved by approximating p(x) itself.

In [2], Gersho shows that for an optimal quantizer, in the
asymptotic situation where the level of quantizer is sufficiently
large, the density function of the reproduction vector will
closely approximate a continuous density function A(x) which
is proportional to [p(x)]”, where « is a constant determined
only by the dimension and the distance measure. This, along
with our argument at the beginning of this section, strongly
indicates that the reproduction alphabet in an optimal quan-
tizer could be used as an effective design set for building
classifiers.

The VQ-kernel Classifier: We propose that vector quantiza-
tion be first applied to the original design set of each class.
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The reproduction alphabets of the resultant optimal quantiz-
ers are then retained as the reduced design sets. Then the
kernel method is applied as usual except that the reduced
design sets are used.

The VQ-kNN Classifier: Similar to the above VQ-kernel
classifier except a kNN classifier is built with the reduced
design sets.

IV. SIMULATIONS AND CONCLUSIONS

By simulating with various data distributions, the perfor-
mance of our VQ-based methods are compared with that
of the traditional reduction algorithms including the CNN,
RNN, ENN, ECNN, as well as Fukunaga’s reduced Parzen
[1]. Fig. 1 shows error rates for real speech data.
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Fig. 1. Classification error rates of VQ-based
classifiers and traditional classifiers for speech data.

It is found that 1): the VQ-kernel classifier outperforms,
in terms of accuracy, all other data reduced algorithms at
all the reduction levels; 2) the VQ-based methods usually
achieve tens of times higher reduction rates while giving the
same level of classification accuracy — this usually means
a drastic reduction in complexity and storage; 3) finding
the reduced design set in the VQ-based methods is tens
even hundreds times faster than that in other proposed data
reduction algorithms [1].

The VQ-based classifier design technique is also extended to
the design of histogram-based classifiers [3].
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Tree-Based Models for Speech and Language
Michael D. Riley
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

Abstract — Several applications of statistical tree-based
modelling are described to problems in speech and lan-
guage, including prediction of possible phonetic realiza-
tions, segment duration modelling in speech synthesis and
end of sentence detection in text analysis.

I. INTRODUCTION

Classification and regression trees {1] are well suited to many
of the pattern recognition problems encountered in speech and
language since they (1) statistically select the most significant
features involved (2) permit both categorical and continuous
factors to be considered, (3) provide “honest” estimates of
their performance, and (4) allow human interpretation and
exploration of their result. Below we describe several appli-
cations of these methods to speech and language processing.

II. PREDICTION OF POSSIBLE PHONETIC
REALIZATIONS

A lattice of possible close phonetic transcriptions given a
phonemic transcription (from the orthography and a dictio-
nary) is produced using a 6000 sentence, multispeaker tran-
scribed database as input. The resulting phonetic network
predicts the correct pronunciation of a phoneme on test data
from the same corpus 83% of the time, contains the correct
phone in the top 5 guesses 99% of the time, and has a con-
ditional entropy of .8 bits. This compares to the null model,
in which only the phoneme to realize is used, that predicts
the correct phone 69% of the time, contains the correct phone
in the top 10 guesses 99% of the time, and has a conditional
entropy of 1.5 bits. [2]

III. SEGMENT DURATION MODELLING IN SPEECH
SYNTHESIS

400 utterances from a single speaker and 4000 utterances
from 400 speakers of American English were used to build
optimal decision trees that predict segment durations. Over,
70% of the durational variance for the single speaker and over
60% for the multiple speakers were accounted for by this
method when using information only at the word level and
below. These trees were used to derive durations for a text-to-
speech synthesizer and were found to give results comparable
to the existing heuristically derived duration rules. Since tree
building and evaluation is rapid once the data are collected and
the candidate features specified, the technique can be readily
applied to other feature sets and to other languages. [3]
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IV. END OF SENTENCE DETECTION

The not-so-simple problem of deciding when a period in text
corresponds to the end of a declarative sentence (and not an
abbrev.) is attempted with trees using the Brown corpus as
input. The result is 99.8% correct classification. The many
special cases required to solve this problem well, nicely show
the value of the tree approach here. The majority of the errors
are due to difficult cases, e.g. a sentence that ends with “Mrs.”
or begins with a numeral [4].

V. DISCUSSION
On the whole, we have found classification and regression
trees quite useful in modelling a variety of phenonema in
speech and language. In part, it is their ability to handle both

_categorical and continuous inputs and outputs that makes them

attractive to us. The fact that they offer efficient algorithms, a
well-established cross-validation procedure, and a relatively
perspicuous representation makes them more appealing to us
than, say, back-propogation neural networks for the problems
we have described.

The principal difficulty we have found with this and similar
statistical approaches is that while the trees classify well most
of the time, they occasionally make egregious errors. When
noticed, it is possible to correct these errors by hand modifi-
cation of the trees. This is, however, quite tedious. Further, if
new data are used or new input features are tried, the editing
has to be redone (if the error remains).

What would be most appealing to us would be techniques
that would allow easy mixing of statistical learning with hand
specification. The user could hand specify what he is sure
of and leave to the statistics to fill in the rest the best it can,
letting us have our cake and eat it too.
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Image Coding via Bintree Segmentation and Texture VQ

Xjaolin Wu!
Dept. of Computer Science, Univ. of Western Ontario, London, Ontario, CANADA, N6A 5B7

Image compression is often approached from an angle of
statistical image classification. For instance, VQ-based im-
age coding methods compress image data by classifying im-
age blocks into representative two-dimensional patterns {code-
words) that statistically approximate the original data. An-
other image compression approach that naturally relates to
image classification is segmentation-based image coding (SIC).
In SIC, we classify pixels into segments of certain uniformity
or similarity, and then encode the segmentation geometry and
the attributes of the segments.

Image segmentation in SIC has to meet some more strin-
gent requirements than in other applications such as computer
vision and pattern recognition. Firstly, the segmentation de-
scription must be compact to ensure low bit rate. Secondly,
the classification criterion should quantify visual differentia-
tion of image patterns. Thirdly, the segmentation process has
to be fast enough to suit image/video coding purposes.

An efficient SIC coder has to strike a good balance between
accurate semantics and succinct syntax of the segmentation.
From a pure classification point of view, free form segmen-
tation by relaxation, region-growing, or split-and-merge tech-
niques offers an accurate boundary representation. But the
resulting segmentation geometry is often too complex to have
a compact description, defeating the purpose of image com-
pression. Instead, we adopt a bintree-structured segmenta-
tion scheme. The bintree is a binary tree created by recursive
rectilinear bipartition of an image. The bintree-structured
segmentation is semantically more flexible than the popular
quadtree, and yet it has as simple syntax as the quadtree.
This nice property translates to compression gains.

Large and smooth surfaces of a natural scene correspond to
regions of fairly continuous intensities in its digital image. In
these regions pixel values can be fit well by a low-order polyno-
mial, and the least-square piecewise functional approximation
yields more compact image description than DCT and VQ.
Luckily, the majority areas of a natural image fall into this
category. This is demonstrated by the facts that most code-
words in a VQ codebook form smooth shading patterns, and
most DCT blocks have dominant low frequency coefficients.
The main advantage of SIC over VQ and DCT is in that it
can adaptively fit an image with more flexible segments than
fixed blocks, resulting in fewer segments hence shorter descrip-
tion. However, in the areas of textures or edges, least-square
piecewise fitting breaks down since higher order terms induce
more real coefficients to be quantized and coded. In com-
parison, VQ technique is more suitable to classify and com-
press textures. Thus within a SIC framework, least-square
approximation and VQ can complement each other for higher
compression than either method alone. This necessitates the
classification of an image into smooth and texture regions.

Many possible classifiers can be used to decide whether a
bintree block is smooth or contains textures or edges. Since we
use least-square approximation to code smooth regions, it is

1This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada.
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convenient to base the classifier on variance. We fit pixel val-
ues by a low-order polynomial to form a largest bintree block
possible under a given error tolerance. The size of the bintree
block serves as the classifier. If the size exceeds a threshold,
we hypothesize that the intensity function is smooth in that
area, and consequently code the block with quantized poly-
nomial coefficients. Otherwise, we hypothesize that the block
contains rich textures. An additional VQ texture coding is
employed on the block to get a better approximation. Using
bintree block size as the classifier means that no side informa-
tion is required to identify the type of the segment.

To design a segmentation algorithm, we can either split
the image top-down or merge primitive blocks bottom-up.
But there are two advantages to the bottom-up merge ap-
proach. By merging smaller blocks, we do not unnecessarily
solve the least-squares problem in large bintree blocks which
cannot possibly be leaf nodes, reducing algorithm complexity.
Also, by examining smaller blocks first, we avoid segment mis-
classification due to smoothing of prominent local textures by
least-square fitting.

A main result of this research is a texture code based on
binary VQ. Let f(z,y) be the input image and g(z,y) be the
least-square linear approximation of f(z,y) in a texture block.
We model the texture to be e(z,y) = f(z,¥) — 9(z,y). DCT
or VQ can be used to encode e(z,y). But lower bit rate can be
achieved for the same transparent image quality by taking the
advantage of the fact that in high texture areas human visual
system is less sensitive to intensity resolution. Therefore, we
coarsely quantize the amplitude of e(z, y) into only two levels,
and map e(z,y) to a binary texture pattern m(z,y), where
m(z,y) = 0 if e(z,y) > 0 and m(z,y) = 1 if e(z,y) < 0.
Depending on m(z,y) = 0 or m(z,y) =1, e(z,y) is quantized
to —o or o, where o is the standard deviation of e(z,y). Note
that e(z,y) is zero mean since it is the residual function of a
least-square linear approximation. Consequently, this simple
bi-level quantization preserves both mean and variance of the
original image just like in block truncation coding.

To obtain rates lower than 1 bit/pixel, we have to com-
press the texture pattern m(z, y) as well. This is a problem
of texture classification which can be solved by binary VQ.
But a direct use of the LBG algorithm often fails to produce
a satisfactory codebook, because the number of local optima
in the sample space of binary vectors is too numerous for a
gradient-descent optimization method to improve on an ini-
tial codebook. To worsen the problem, the expected Ham-
ming distance previously used in binary VQ as the distortion
measure does not proportionally quantify the visual quality
degradation caused by inverted bits. This is because the per-
ceived texture reproduction quality is affected not only by the
average error but also by burst errors. It 1s important not to
invert two or more adjacent bits. We discover that the use
of linear codes for binary VQ in the spirit of optimal sphere
covering offers remedies to both problems of local minimum
trap and burst error.
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Coding for Noisy Feasible Channels

Richard J. Lipton]L
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rjl@princeton.edu

Abstract: We prove a constructive version of Shannon’s Fundamental Theorem of Information
Theory. The new theorem holds for any feasible channel. A channel is feasible provided it is
computable by a polynomial time computation.

Our main result is a new constructive proof of Shannon’s Theorem. Consider a feasible
channel. Then, there is a coding method C with the following properties:

(1) We can construct C in polynomial time.

(2) We can encode any message in polynomial time.

(8) We can decode any message in polynomial time.

(4) The E)r)obability that the method makes an error goes to 0 at least as fast as

1/n00),

(5) The rate of the method can be as close to the capacity of the channel as one wishes.
How do we construct these codes? Following Lipton [1] we restrict the channel to be “feasible”.
That is we restrict the channel to only use random polynomial time to decide which bits to
change. Essentially, any channel is characterized by two parameters: (i) how “mean” it is; (ii)
how “smart” it is. We measure how mean a channel is by how many bits it can change. We
measure how smart a channel is by how much computation it is allowed to perform to decide
which bits to change. Thus, our key point is: only allow channels with smartness bounded by
random polynomial time.

We claim that “real” channels have their smartness limited in this way. This is an assertion
like “Church’s Thesis” and of course cannot be “proved”. It is, we claim, a reasonable assump-
tion. Real channels are analog/digital systems. It certainly appears to be reasonable to assume
that such systems cannot do more computing than random polynomial time. If a real channel
existed that could do more than polynomial time computation, then perhaps we could use it to
solve intractable problems! Note, in classic information theory often the most powerful kind of
channel considered is a channel that is finite state. Of course this is in our class.
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Coding for Distributed Computation
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Extended communications among component
processors are essential to the operation of all but
the simplest computers. In this talk we are con-
cerned with the following question: if the communi-
cations among processors, linked in some network,
are unreliable, what is the effect on the efficiency
and reliability with which the network can perform
a computation?

An important case of this scenario, that in which
there are two processors and the required task
is to transmit a large block of data from one to
the other, actually predates large-scale computing.
Shannon’s coding theorem addresses this problem,
and shows that in order to reliably transmit a mes-
sage of T bits over a noisy communication chan-
nel it suffices to send a message of length T% (for
0 < C < 1 the “Shannon capacity” of the channel).
The theorem ensures that the probability of a de-
coding error is exponentially small in the message
length T.

We will describe analogous coding theorems for
the more general, interactive, communications re-
quired in computation. In this case the bits trans-
mitted in the protocol are not known to the pro-
cessors in advance but are determined dynamically.
Therefore the block encoding technique used in the
proof of Shannon’s theorem, does not apply.

First we show that any interactive protocol of
length T between two processors connected by a
noiseless channel can be simulated, if the channel
is noisy (a binary symmetric channel of capacity

*Research supported by an NSF Mathematical Sciences
Postdoctoral Fellowship.

C), in time proportional to T%, and with error
probability exponentially small in T'.

Then we show that this result can be extended to
arbitrary distributed network protocols. We show
that any distributed protocol which runs in time T
on a network of degree d having noiseless commu-
nication channels, can, if the channels are in fact
noisy, be simulated on that network in time pro-

" portional to T% log d. The probability of failure of

28

the protocol is exponentially small in 7.
Preliminary presentations of these results can be
found in [1, 2].
The network theorem is joint with Sridhar Ra-
jagopalan. '
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Minimal Randomness and Information Theory
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Abstract — This is a tutorial survey of recent in-
formation theoretic results dealing with the minimal
randomness necessary for the generation of random
processes with prescribed distributions.

I. INTRODUCTION

Shannon Theory explores the fundamental limits on the size
of codes that enable the reliable reproduction or transmission
of information. Reliability is typically quantified by the prob-
ability that the decoded message is equal to the original one,
or by some measure of the distance between the original and
decoded messages.

In this paper we are not interested in the reproduction
or transmission of information but rather in the generation
of random processes with prescribed distributions, and asso-
ciated problems. For example, we may want to simulate a
“real-world” random process, or the response of a system to
such an input. Random process generation is accomplished by
adequately mapping a source of pure random bits. A key ques-
tion that quantifies the “complexity” of the random process is
the minimal randomness of the source of pure bits necessary
to accomplish the task. As in conventional Shannon theory, a
rich theory arises when some distance (often arbitrarily small)
is allowed between the desired and the resulting probability
distributions. To this end, several distance measures have
been considered in the literature, such as variational distance,
divergence, p-distance, etc.

1I. SOURCE RESOLVABILITY

The resolvability of a source is defined [1] as the minimal
number of random bits per sample it takes to reproduce the n-
dimensional distributions with arbitrary accuracy as n tends
to infinity. A general formula is shown in [1] for the resolv-
ability of a source. For the special case of stationary ergodic
sources and variational distance it is equal to the entropy
rate. Reference [7] considers the problem of finite-precision
resolvability where the approximation distance need not be
arbitrarily small, and shows that for any information stable
source D-resolvability is independent of D in the special case
of variational distance. However, with less stringent approx-
imation measures such as the Prohorov and p-distance, the
D-resolvability is shown in [7] to be given by the rate distor-
tion function evaluated with a sample-path distortion metric
derived from the distribution distance measure.

11I. CHANNEL RESOLVABILITY

In system simulation, the objective is to induce the same
output distributions as those that would obtain with a “real-
world” input. The channel (or system) resolvability defined
as the minimal randomness required to generate any desired
input so that the output distributions are approximated with
arbitrary accuracy. Naturally, the more “random” a system is,
the lower its resolvability, as it does not pay to reproduce fine
details in the input distributions. It is shown in [1] that the
channel resolvability is equal to its capacity for most discrete
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channels (those that satisfy the strong converse). The com-
plementary problem where the input is given but the channel
is to be simulated is studied in [5], where it is shown that
the minimal randomness required to simulate the system for
a specific input is equal to the conditional entropy rate of the
output given the input.

IV. INTRINSIC RANDOMNESS

A problem which is dual to source resolvability is the maz-
imal randomness rate that can be extracted from an arbitrary
source. The intrinsic randomness rate of a source is defined in
[9] as the largest rate of almost-fair coin flips that can be ex-
tracted by a deterministic mapping of the source. For station-
ary ergodic sources and variational distance the intrinsic ran-
domness rate is equal to the entropy rate [9]. However there
are nonstationary sources for which the intrinsic randomness
rate is not equal to the minimal noiseless source coding rate.
The more general problem of finite precision intrinsic random-
ness is studied in [10]. Using variational distance, [10] shows
that the finite precision intrinsic randomness rate is given, es-
sentially, by the inverse asymptotic distribution of the entropy
density.
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Finite-precision Intrinsic Randomness and Source Resolvability
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I. INTRODUCTION AND DEFINITIONS

Random number generators are important devices in ran-
domized algorithms, Monte-Carlo methods, and in simulation
studies of random systems. A random number generator is
usually modeled as a random source emitting independent,
equally likely random bits. In practice, the random source one
has at hand can deviate from this idealized model, and the ran-
dom number generator operates by applying a deterministic
mapping on the output of the (nonideal) random source. The
deterministic mapping is chosen so that the resulting process
approximates — in some sense — a sequence of independent,
equally likely random bits. A prime measure of the intrinsic
randomness of a given source X is the maximal rate at which
random bits can be extracted from X by suitably mapping
its output. This maximal rate depends on the statistics of the
source X and on the sense of approximation. In [1]it is shown
that the maximal rate at which arbitrarily accurate approxi-
mations of pure random bits can be extracted from X equals
its inf entropy rate, H(X). The measures of accuracy with
respect to which this result was shown to hold are the varia-
tional distance, the d distance and normalized divergence.

In problems like randomized algorithms, or Monte-Carlo
simulations, an arbitrarily accurate approximation of pure
random bits may be more than what we need, and a con-
trolled deviation from pure random bits can be tolerated. In
such cases, one may wish to increase the rate of generation of
random bits at the expense of a coarser approximation of the
desired fair coin flip distributions. In this work we study the
problem of finite-precision random bit generation, where the
accuracy measure is the variational distance. The results pre-
sented here extend part of the results in [1] and also provide
a nice counterpart to the finite-precision source resolvability
problem that was studied in detail in {2].

Throughout, X is a random source with finite alphabet A,
and logarithms have base 2. We start with a few definitions.
Definition 1 [1] R is a D-achievable intrinsic randomness
rate of X if there exists a sequence of deterministic mappings

¢n: A" — {0,1}" such that for all ¥ > 0 and sufficiently
large n,

,.

Y >R-—»«
and

dy(¢a(X™),B") < D

where B" stands for an equiprobable distribution over {0,1}"
and dy(,-) is the variational distance between distributions.

Definition 2 The finite-precision intrinsic randomness rate
of X is defined as the supremum of the D-achievable intrinsic
randomness rates of X and is denoted by Uy (D, X).

Note that Uy (2, X) = oo for every source X. The next defini-
tion deals with the relevant information theoretic function.

Definition 3 The variational inf rate-distortion function of
X, R,(D), is defined as the supremum over all real numbers
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h satisfying

<

1 1 D
i Rlloge——=<h —.
h'x'!is:pr (n log Pxe(X7) < ) 2
Thus, R, (D) is the largest real number h such that the mass
of the entropy density to the left of h does not exceed D/2,
asymptotically. Note that for every source R, (0) equals the
inf entropy-rate of the source, H(X), and R,(2) = oo.

II. RESULTS
Theorem 1

U.(D,X) = R,(D).

The next corollary is an easy consequence of Definition 3 and
Theorem 1: it implies that if X is information stable, one
cannot increase the asymptotic rate of production of random
bits by increasing their deviation (w.r.t. variational distance)
from ideal fair coin flips. This result has a nice counterpart in
the finite-precision source resolvability problem: it is shown
in [2] that if X isinformation stable, then its variational finite-
precision resolvability Sy(D, X) is independent of D in the
region 0 < D < 2.

Corollary 1 If X is information stable, then for 0 < D < 2
R,(D) =Us(D, X) = H(X).

In [2] the variational finite-precision source resolvability was
characterized as the infimum of the sup information rate over
an appropriate class of channels — the corresponding sup rate-
distortion function. The nice duality between the problems
of finite-precision source resolvability and finite-precision bit
generation, and Corollary 1, leads one to suspect that the
variational finite-precision source resolvability (and hence also
the sup rate-distortion function) as defined in [2] admits a
simpler characterization - such as that in Definition 3. This
is indeed the case, as one can see from the following theorem.

Theorem 2

Sv(D,X) =E0(D)
. 1 1 D
mf{h. (;logm>h> 5-2—}

Thus, the variational sup rate-distortion function as defined
in [2] is also equal to the smallest real number h such that the
mass of the entropy density to the right of h does not exceed
D/2, asymptotically.

lim sup Px»
n=—00
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Identification via Compressed Data

Rudolf Ahlswede!, En-hui Yang, and Zhen Zhang?

1. INTRODUCTION

In this paper, a combined problem of source coding and iden-
tification is considered. To put our problem in perspective,
let us first review the traditional problem in source coding
theory. Consider the following diagram, where {Xn}n%; is an

{x,} binary data of 2}
rate R

Figure 1: Model for source coding

i.i.d source taking values on a finite alphabet A. The encoder
output is a binary sequence which appears at a rate R bits
per symbol. The decoder output is a sequence {Xn}f° which
take values on a finite reproduction alphabet Y. In traditional
source coding theory, the decoder is required to be able to re-
cover {X™}{° completely or with some allowable distortion.
That is, the output {X,}{° must satisfy
n

n Y p(Xi X <d 1)

i=1

for sufficiently large n, where p : X x Y — [0,+00) is a dis-
tortion measure and d > 0 is the allowable distortion. The
problem is then to determine the infimum of rate R such that
the system shown in Fig.1 can operate in such a way that (1)
is satisfied. From rate distortion theory, this infimum is given
by the rate distortion function of the source {Xn}{°.

Let us now consider the system shown in Fig. 2. The se-

{x,} binary data of
rate R

)
Figure 2: Model for joint source coding and identification.

quence {Y,}{° is a sequence of i.i.d random variables taking
values on V. Known {Y,}, the decoder is now required to be
able to identify whether or not the distortion between {X,}
and {Y,} is less than or equal to d in such a way that two
kinds of error probabilities satisfy some prescribed conditions.
The problem we are now interested in is still to determine the
infimum of rate R such that the system shown in Fig.2 can
operate in this way.

II. FORMAL FORMULATION OF PROBLEM
Let {(Xn,Yn)}{° be a sequence of independent drawings of
a pair (X,Y) of random variables taking values on A x y
with joint distribution Pxy. Fix 0 < d < Ep(X,Y). An
nth-order identification (ID) code Cy is defined to be a triple
Cn = (fn, Bn,gn), where Bn C {0,1}" is a prefix set, fn(called
an “encoder”) is a mapping from X" to By, and gn(called a

1Fakultaet fuer Mathematik, Universitaet Bielefeld, 4800 Biele-

feld 1, Germany
2Commun. Science Institute, Dept. of EE-Systems, University
of Southern California, Los Angeles, CA 90089-2565.
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“decoder”) is a mapping from Y™ x Bn — {0,1}. When Cn
is used in the system shown in Fig.2, its performance can be
measured by the following three quantities: the resulting av-
erage rate defined by rn(Cn) = En~!(the length of fu(X™)),
the first kind of error probability defined by pei(Cn) =
Pr{ga(Y", fa(X™)) = 0lpn(X",Y™) < d}, and the second
of error probability defined by pe2 = Pr{gn(Y", fa(X")) =
1pn(X"™,Y") > d}.

Let R € [0,+00), @ € (0,+0c0] and B € (0, +00]. A triple
(R, @, B) is said to be achievable if for any € > 0, there exists
a sequence {Cn} of ID codes, where Cpn = (fn,Bn,gn) is an
nth-order ID code, such that for sufficiently large n,

ra(Ca) S R+e, pa <2779 and peo <2777,
where as a convention, a = +o0o(8 = +oo, resp.) means
that the first(second, resp.) kind of error probability of C.
is equal to 0. Let R denote the set of all achievable triples.
In this paper, we are interested in determining the closure
R of R. Specifically, we define for each pair (a,f), where
«a, BE€ [0: +°°]1 _

Ryxy(a,B,d) =inf{R|(R,a,8) € R} .
Our main problem is then the determination of the function

R;(Y(ayﬁrd)'

III. MAIN RESULTS
Assume that X and Y are independent. For any 0 < d <
Ep(X,Y), define B(d) by B(d) = inf D(P||Pxy), where the
infimum is taken over all distributions P on X x Y such that
Zx’y P(z,y)p(z,y) < d. Let U be a random variable tak-
ing values on some finite set /. Let Pxy denote the joint
distribution of X and U. For any a > 0, define _
£(Pxv,a,d) = inf{D(Pg||Py) + I(U;Y)},

where the infimum is taken over all random variables Y tak-
ing values on Y such that Ep(X,Y) < d and D(Py||Py) +
I(XU;Y) < B(d) + a. Here we make use of the convetion
that the infimum taken over an empty set is +oo. We define
for any 8 >0

R(Px, Py, @, B,d) = inf{I(X;U)|Uis a R.V. with £(Pxv, a,d) > 8}

and let
R(Px,Py,a,0,d) = lim R(Px,Py,a,8,d).
B0+

The following
R;(y(a,ﬂ,d).
Theorem 1 For any 0 < d < Ep(X,Y), 0 < 8 < B(d), and
a € (0,+00), the following holds

R;(Y(a)ﬂrd) = R(PX,PY,a,ﬂ,d) )

theorem gives a general formula for

where

R(Px,Py,a,B,d) = Lm R(Px,Py,a,f'd).
B —p

The converse part of Theorem 1 is related to the general
isoperimetric problem. Duriug the process of proving the con-
verse part, we develope a new powerful method for converse-
proving in multi-user information theory. For more details,
please refer to [1].
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Testing of Composite Hypotheses and ID—codes

M.V.Burnashev and S.Verdu

Abstract — A geometrical approach to ID-
codes, based on their equivalence to some natural
notions from mathematical statistics is described.
That not only enlarges the available analytical ap-
paratus, but also enables us to strengthen some
known results.

Let A and B be finite input and output alphabets of
a stationary memoryless channel with conditional tran-
sition probabilities W (bla),a € A,b € B. If P is some
probability distribution (measure) on the channel input
A" then by Q = PW( we denote the generated distri-
bution on the channel output B™.

Definition 1 [1]. A collection (B;, D;,i = 1,..., M)
of probability measures P; on A™ and regions D; C B™ is
called an (M, n,68) — ID—code if the following conditions
are satisfied:

Q:i(D;) >1-4dand Q;(D;) <6 for any i # j.

What concerns the maximal cardinality M (n,d) of ID-
codes, it is known that [1,2]

lim Inln M(n,d)

n—00 n

=C,O<6S60, (1)
where C - channel capacity and & is some positive con-
stant.

Another meaning of Definition 1 is that the collection
of measures {P;} of an ID—code has the following prop-
erty: any simple hypotheses P; can be “tested” against
the composite alternative consisting of all remaining mea-
sures {P;, j # i} from the same family. Or, any measure
P; is “almost orthogonal” to the convex combination of
all remaining measures.

We develop [3] in a quantative manner this connection
between ID—codes and the testing of composite hypothe-
ses. Such an approach not only enlarges the research
analytical apparatus, but also enables us to strengthen
some results from [1,2). In particular, it is shown that
the equality (1) remains valid for any 0 < § < 1/2. That
gives certain completeness to (1), since for § > 1/2 the
number M (n,§) becomes infinite provided that random-
ized decision rules are allowed for use.
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Asymptotically Optimal Model Selection and Neural Nets

Andrew R. Barron
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Abstract — A minimum description length crite-
rion for inference of functions in both parametric and
nonparametric settings is determined. By adapting
the parameter precision, a description length crite-
rion can take on the form —log(likelihood) + const - m
instead of the familiar —log(likelihood) + (m/2)logn
where m is the number of parameters and n is the
sample size. For certain regular models the criterion
yields asymptotically optimal rates for coding redun-
dancy and statistical risk. Moreover, the convergence
is adaptive in the sense that the rates are simulta-
neously minimax optimal in various parametric and
nonparametric function classes without prior knowl-
edge of which function class contains the true func-
tion. This one criterion combines positive benefits of
information-theoretic criteria proposed by Rissanen,
Akaike, and Schwarz. It is also reviewed how the min-
imum description length principle provides accurate
estimates in irregular models such as neural nets.

I. Minimum description length criterion
Data Y1,Y3,...,Y, are assumed to be independent with an
unknown density p. Let a sequence of parametric fami-
lies be given. Each family has a density px(y|§), parame-
ter space Ok, and codelengths L(k), L(|k) for the model
index k and parameters 6 in a discrete subset O C ©Oy.
The codelengths are assumed to satisfy Kraft’s inequality.
Then mingg, {log 1/px(Y™|9) + L(8|k) + L(k)} is the length
of a uniquely "decodable code for the data, where px(Y"(0) =
I, pk(Y|0) The index k and parameter value 6 achieving
the minimum description length (MDL) provides the density
estimator p(y) = pk(y|9) [2,3].

The data compression quality is measured by the redun-
dancy of the MDL code, which is bounded by the index of re-
solvability R, (p) = min,6{D(p|lps,6)+(1/n)(L(8]k)+L(k))},
where D(p||g) denotes the Kullback-Leibler divergence [2].

The statistical accuracy of the MDL estimator of the den-
sity 1s also bounded by this index of resolvability [2]. Indeed,
Ed*(p, ) < O(Rn(p)) where d(p, ) is the Hellinger distance.

Usual choices of parameter discretization lead to a penalty
terms of (m/2)log n where my is the dimension of the kth
family. Then the resolvability is minimax optimal for p in any
of the parametric families, but it is suboptimal by a logarith-
mic factor for p in smooth nonparametric classes.

Here the discretized parameter spaces are modified to allow
penalty terms of order my, without excessive loss in log like-
lihood for smooth densities. As a consequence of the removal
of the logarithmic factor, the redundancy and the statistical
risk will achieve the minimax optimal rates. Other modifi-
cations are needed for irregular models such as neural nets,
which retain the logarithmic factor.

II. Geometrically regular families
We consider cases in which sequences of parametric models
provide accurate approximations with parameter values in an
ellipse Eysm = {6 € R™ : 5 0, i2°6? < r?} with accuracy
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D(p|lpm.e) < er’/m?®, where r,s are unknown. The models
are chosen such that D(pm,e||pme') is bounded by a constant
times the squared Euclidean distance between parameters 8
and #’. These conditions hold for instance when the loga-
rithm of the density on an interval is parameterized using a
polynomial or trigonometric expansion of degree m and the
true log-density has a bound on the L? norm of its sth deriva-
tive. (The conditions also hold in a regression setting with
Gaussian errors and smooth regression functions modeled us-
ing polynomial or trigonometric series.)

The discretized parameter space ©,, is taken to be the
union for all positive integers r, s, ¢, of the ellipses E; ; m in-
tersected with a cubical grid Gem spaced at width 1/£ in
each coordinate. An evaluation of the cardinality of the el-
lipse restricted to the grid shows that we may set L(8]m) =
mlog(Jer) + O(log(rsf)), where J = £/m*+t1/2 | This code-
length is of order m for bounded J whereas it is of order
(m/2)log n when J is of order y/n. The corresponding MDL

criterion leads to estimates 7, 7, §, £, #, and p = Ppé- Plug-

ging the approximation and codelength bounds into the re-
solvability leads to the rate (1/n)?¢/(34+1) which is minimax
optimal for the redundancy and for the statistical risk. The
optimal rate is achieved adaptively, that is, in the absense of
knowledge of the index of the smoothness class.

ITII. Neural nets

Analogous treatment for functions of d variables with the
usual expansions leads to an exponentially large parameter
dimension mg = k¢ is minimax optimal yet requires exponen-
tially large samples sizes to obtain accurate estimates. For
practical inference, it is necessary to consider more restrictive
function classes and more parsimonious models.

One useful condition is that the spectral norm C; =
f |w||f(w)]dw have not too large a value, where f denotes the
Fourier transform of the target function f. Sparce trigono-
metric or sigmoidal expansions fm(z) =3 . cid(a: -z +b)
with a fixed sinusoidal or sigmoidal function ¢ (nonlinearly pa-
rameterized by a; and b;) provide an approximation error of
[|f = fml|l? < C}/m and a complexity per sample size of order
md(log n)/n, yielding a resolvability of order c;(d(log n)/n)*/2
as shown in [1]. Here the number and choice of terms is
selected using a description length criterion with penalty of
(# param.)log n times a constant. The resulting resolvability
exhibits more favorable behaviour in high dimensions than is
possible with linear models.
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SOME ESTIMATION PROBLEMS IN INFINITE
DIMENSIONAL GAUSSIAN WHITE NOISE
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Abstract—Methods of the Information Theory and Approximation Theory

are used to obtain the conditions for the existence of consistent estimators for
the observations in a Gaussian white noise in a Hilbert space.

0.1 Statement of problem

Let H be a Hilbert space and Q a symmetric positive operator in H.Let
wo(t) be a Q-Wiener process in the terminology [1]. Let L,(0,1) = L, be
the Hilbert space of H-valued functions s with the inner product and norm

(s1:52) = [ (s1(0)sa)dti sl = (s,)

We assume that the process X,(¢),0 <t <1, is observed, and
dX.(t) = S(t)dt + edwq(t) (1)

It is known a priori that the "signal” s runs a known set ¥ C L, and the
intensity ¢ and correlation operator @ of a "noise” dwg(t) are known to a
statistician. The problem is to estimate the value ®(s) of a known function
& : L, — U (U is an Euclidean or Hilbert space).The estimation of S and
the estimation of finite dimensional parameter in S can be imbedded in this
general scheme.

0.2 LAN property

Let PS(E) be the probability distributions associated with X., and Fgbe the
distribution of ewg(t).1t is well known [2], that for & C Q'/*L, the measures

'Research of this author was supported in part by ISFGrant R36000,Russian

Nat.foundation Grant,ONR Grant N00014-93-1-0936.
2Research of this author was supported in part by ONR Grant N00014-93-1-0936.
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P_ée) are mutually absolutely continuous and

dP.gZe 12h o v Ac1/2 1 2

— o %) = expl (@7 h. dua(t) - FlAIF)
It follows that the family of measures { P§, S € £} satisfies the LAN condition
in the sense of [3.]
This fact implies the minimax lower bound of the estimation risks for ®(S)
and allows to investigate the concept of efficient ( asymptotically ) estimation
for this model.Some natural examples are considered.

0.3 The existence of consistent estimators

If neither ®'(S) nor QY/? are Hilbert-Shmidt operators it is impossible to
guarantee the existence even of consistent estimators for ®(5).Nevertheless
methods of the information theory and theary of approximation allow to pro-
pose some necessary and sufficient conditions for the existence of consistent
in some metric estimators and to find the rate of convergence of risks to zero
when ¢ — 0.For example let Q~1/2F be a bounded set in L,.Let & : L, — B
be a linear operator,B is a Banach space.Then uniformly consistent estima-
tors of S exist iff ®Q/? is a compact operator.

Our approach generalizes the results of [4].
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Local Polynomial Estimation of Regression Functions
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Abstract — Local polynomial fitting for the estima-
tion of a general regression function and its derivatives
for p-mixing and strongly mixing processes is consid-
ered. Joint asymptotic normality for the regression
function and its derivatives is established.

1. INTRODUCTION

Local polynomial fitting has been studied in recent years un-
der the assumption of i.i.d. observations and has been shown
to possess very useful statistical properties in the context of
curve estimation. This paper considers a time series setting
and treats the following regression estimation problem. Let
{Xi,Y:} be a stationary process and let ¢ be a measurable
function on the real line. Assume that El$(Y1)] < oo and
define the regression function

m(z) = E[$(Y1)| X1 = 2].

Estimates of m(z) and its first p derivatives, via a local polyno-
mials fit, are considered. Special cases include the estimation
of conditional distributions and densities $(Y) = I{Y < g},
conditional moments ¥(Y) = Y9, and d-step prediction in
time series Y;i = Xiyq. The joint asymptotic normality of
m(z) and its associated first p derivatives is established for
mixing processes {Xi, Yi}.

I1. FORMULATION
If the (p + 1)** derivative of m(z) at the point z exists, we
approximate m(z) locally by a polynomial of order p:

m() % m@) o) a2 [ = o e
1

One then carries a local polynomial regression by minimizing

(¢(K) -y A —z)") k(22 @

where K(-) denotes a nonnegative weight function and h —
a smoothing parameter — determines the size of the neigh-
borhood of z. Hé = (,@o, . -,/3',,) denotes the solution to the
above weighted least squares problem, then by (1), 7Bi(z)
estimates m{)(z),j = 0,-++,p. Minimizing (2) leads to the
following set of equations: Let Kn(z) = K(z/h)/h and let

1em(Xi—z\’
3"'j=;2( 3 )Kh(X;—x),

i=1

n

2

i=1

3

- (%ﬁ)jh'h(xi—f)“/’(x‘)‘ @

§=1

1
tn,j - -’;

1This work was supported by the Office of Naval Research under
Grant N00014-90-J-1175.
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Putting

8n,0 Sn,p

(5)
Sn,p 3n,2p
the solution to (2) can be expressed as

B(z) = diag(1, R, RTP)SH L, (6)

I1I. RESULTS

Denote
+oo +o0
Bj =/ v K(u)du, v; =/ w K?(u)du.
—00 -00
and
Ho Hp Vo Vp
s=1: to]y S= N PG
Hp H2p vp vap
Bp+1
e=| (8)
H2pt1

We only state here one result along with the conditions on
the mixing coefficients. See [1] for the complete analysis and
results.

Condition 1. Assume that ky — 0 and (nkn)/log?(n) —
oo and put sp, = (nhn)llz/log n. For p-mixing and strongly
mixing processes, we assume that

(n/h,,)lnp(sn) —0 and (n/ha)"*a(sn) =0, as n — 0.

Theorem . Under Condition 1, if hn = O(n!/(?P¥%)),

then, as n — 00,

. p+1 . (p+1)
ke (‘“ag“’ e BGE) - p] - ) ms"ﬁ)

£, N(0,0%(z)S 71857/ f(2))

where o%(z) = var($(Y)|X = z), at continuity points of o*f
whenever f(z) > 0.

Remark. The theorem gives the joint asymptotic normal-
ity for the estimators {/{?)(z) = 3185(2)}2=o- The asymptotic
normality, “bias”, and “variance” of the individual compo-
nents follow immediately from the theorem.

REFERENCES
{1] E. Masry and J. Fan " Local polynomial estimation of regres-
sion functions for mixing processes.” Submitted for publication,
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The asymptotic normality of global errors for a histogram based density

estimate

Laszlo Gyorfi
Technical University of Budapest

Let {X;} be a sequence of i.i.d. real valued ran-
dom variables with common unknown density f. We
denote by p the measure with density f. We con-
sider the histogram estimate f, of f built from a par-
tition P, = {An;} with interval size h, > 0 that is
fn(z) = pn(An(2))/hn, where An(z) = Api if 2 € An;

and p, is the empirical measure. Introduce the following

notation:

V(@) = Var 1M1+ 50 - 1)

where a > 0 and N is a standard normal A(0, 1) random

variable.

Theorem 1 ([2]): If f is continuously differentiable and
if hn = cn=1/3 then

V(1 fa = fll = Ellfa = £ll) /o 2 N(0,1),

2 _ ca/z fll
where 02 = [V (—Z&f-) f-

One can show that 62 < 1 % This should be compared
to the rate of convergence of E||f, — f||, which is at least
of order n=1/3 for differentiable f, and it can be achieved
for h, = cn=1/3.

We consider the problem of estimating an unknown
probability density function in information divergence.
If 4 and v are probability measures on the real line, ab-
solutely continuous with respect to a o-finite measure A
with densities f and g respectively, then the information

divergence between u and v is defined by

[ jo)10g L@
M) = [ fe)log I

Mdz) = D(f,9).

Barron, Gyorfi and van der Meulen (1992) showed that
if there exists a known density g such that D(f,g) < oo,
then one can construct a density estimator as follows:
define a sequence of integers m,, and put h, = 1/m,
. Let v denote the probability measure with density g.

Introduce partitions P, = {An1,4n,2, s Anm.}r # =
2,..., of the real line such that the A, ;’s are intervals
with v(Ap ;) = hy. For a given sequence an = 1/(nh,+1)
consider the following density estimate:

fn(2) = (1 = an)in(An(2))/hn + an)g(2)-

If in addition lim, o ks = 0, limy, — 0 nhy = 00, then
limp oo D(f, fn) = 0 as.

Theorem 2 ([3]): Let S, be the support set of u. Under
the conditions of consislency

228 [D(f, fa) = E(D(f, fa))] == N(0,02),
where 0% = v(S,) > 0.

For the choice m,, = n'/3 the rate of convergence of the
random part of the divergence error is of order n=%/,
and under some restrictive conditions on the unknown
density f

E(D({f, fa)) < O(n=?/%).
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Bandwidth Choice and Convergence Rates in Density
Estimation with Long-Range Dependent Data

Peter Hall, Soumendra Nath Lahiri, Young K. Truong
Centre for Mathematics and its Applications, Australian National University,
Canberra, ACT 0200, Australia

Abstract — We discuss optimal bandwidth
choice and optimal convergence rates for density
estimation with dependent data, as the amount of
information in the sample is altered by adjusting
the range of dependence.

I. INTRODUCTION

Assume that data are observed from a stationary stochas-
tic process that may be taken to be an unknown function
of a Gaussian process. Thus, the strength of dependence
is determined entirely by a single sequence of numbers,
the covariances 7(i); this makes it relatively straightfor-
ward to appreciate the influence of different strengths of
dependence on various aspects of bandwidth choice, even
up to terms of second or third order. Let us assume here,
for the sake of simplicity, that y(z) ~ ¢i™® for constants
¢ # 0 and @ > 0. Then smaller values of « correspond
to less information in a data sequence of given length n
from the process, and hence to slower convergence rates.
Surprisingly, the traditional dichotomy of short-range ver-
sus long-range dependence, or equivalently o > 1 versus
a < 1, does not have a major role to play in the band-
width choice problem. We shall discuss the effect that
the value of & has on optimal bandwidth choice and, cor-
respondingly, on convergence rates.

II. QUTLINE OF MAIN RESULTS

In the case of density estimation based on a second-order
kernel, the “barrier” normally encountered at @ = 1 oc-
curs instead at & = 4/5. When a > 4/5 the minimum
mean integrated squared error (MISE) is asymptotic to
a constant multiple of n~%/3, which is identical to that
value which it enjoys in the case of independence (effec-
tively, @ = 00). Indeed, even the value of the constant 1S
identical to that which it would be for independent data.
Furthermore, for such a’s the deterministic bandwidth
that minimizes MISE agrees even to second order with
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its counterpart in the case of independent data; under
short-range dependence, where a > 1, the agreement is
up to (but not including) third order.

When a < 4/5, minimum MISE is of size n~¢, but
curiously, provided that 2/5 < @ < oo, the bandwidth
that produces the overall minimum still agrees to first
order with its counterpart in the case of independent
data. Thus, very-long-range dependence is allowable be-
fore much change has to be made to the optimal band-
width formula. Only when « < 2/5, which is a context
of particularly long-range dependence, is there a large
difference between the first-order properties of the MISE-
optimal bandwidth under dependence, and its counter-
part for independent data.

What is more, even when a < 2/5 the bandwidth ap-
propriate for independent data produces first-order mini-
mization of MISE. This is a consequence of the fact that,
whenever a < 4/5, adjusting the bandwidth in the vicin-
ity of the optimum has an effect only on second- and
higher-order terms; to first order, MISE does not depend
on bandwidth. This result is rather striking to researchers
who are familiar only with the case of independent data,
where first-order adjustments to bandwidth always affect
first-order features of performance.

More generally, if the kernel is of order r > 2 then the
“boundaries” at 2/5 and 4/5 change to r/(2r + 1) and
2r/(2r + 1), respectively.

These results indicate that those practical bandwidth-
choice rules that have been proposed for independent data
and are based on plug-in rules, have straightforward gen-
eralizations to certain types of dependent data, even un-
der very long-range dependence. Generally speaking this
is true, although there are some qualifications.
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Large deviations and consistent estimates for Gibbs Random fields

Francis COMETS!
Univ. Paris 7 - Denis Diderot, Mathematiques case 7012, 2 place Jussieu 75251 Paris cedex 05, France

Abstract - Large deviations estimates yield a
convenient tool to study asymptotics of Gibbs fields.
Applications to parametric estimation and detection
of phase transition are given.

L. INTRODUCTION

Gibbs Random Fields (GRF) provide pertinent
statistical models for spacial data X; i € 29 where
important features of the dependence structure can be
captured in a very natural way. An important issue is
image analysis via D. § 5. Geman's Bayesian approach.

II. PARAMETRIC FAMILIES OF GRF

We are given for each 8 € © c RP a compatible family
indexed by finite A ¢ Z¥ of conditional distributions Mga
of Xpo =(Xiea given Xjc; these ITg, are related by a

natural translation invariance property. A distribution P -

having these specified conditional distributions Ilg, is
called a GRF. First order phase transition occurs when
the set G(8) of such GRF contains more than one element ;
this situation is characterized by the fact that the set

G;(8) of stationary elements of G(8) does not reduce to a
singleton. Note that this is not an effect of ill
parametrization, but an intrinsic phenomenon. Then, some
GRF are not ergodic, and even worse, it may exist some
GRF which are not translation invariant. Statisticians in
front of real data should not assume invariance in general.

III. LARGE DEVIATIONS

The empirical field based on a configuration
X =(X;); ¢ z¢ and on a cubicbox A is
1
RA,X = IA! lEZA s‘qx

with 1; the shift operator. When it holds the ergodic
theorem states that the empirical field is a good guess for
the actual GRF. In general we will use the following as a
substitute. In general, large deviations estimates hold, for
all P e G(6), and they mean heuristically

“P{RyxclosetoQ} ~ exp- [Al L@" ()

for some non-negative entropy functional I defined on
the set of random fields. Moreover

'URA CNRS 1321 “Statistique et Modéles Aléatoires”

Q) =0=Qe Gy6) @

The relations (1) and (2) simply state that the data will
not behave worse than the worse stationary GRF.

IV. CONSISTENCY CRITERIA FOR PARAMETRIC
ESTIMATORS

Let A be the window of observation, and 5} be any

maximizer of some objective function 8 — ky (8 ; Xj).
Assume that there exists a real continuous function
K(0;Q) with

i) kA(O;xA)=K(9;RAx)+eA and,AE’n%d sup €A=0

Xx,0€0©

ii) @ is the unique maximizer of K(.;P), 0e€ © , P e G,(9)
iii) © is compact.

Then,éx is a.s. consistent.

The previous criterium applies to classical estimators
in a general setup. The question of asymptotic optimality
also suffers from the breakdown in the central limit
theorem, related to phase transition : it can be treated via
large deviation using Bahadur’s approach. At last, prior
to the use of gaussian statistics and tests, one would like
to know from the data themselves if phase transition hold
or not.

V. DETECTING PHASE TRANSITION

For cubic boxes A we now choose smaller cubic boxes
A’ suchthat,as ATZ4

IA[TLog [Al >0, A Log |ADYED 0 3)
Define the set A, (X) of moving empirical fields R;, 5+, x
based on all the translates i + A’ of A’ which are
included in the window of observation A . Generalized

Erdos-Rényi laws state that for P € G(8) , under the
condition (3) itholds P-a.s.

Jim, 4, (0=G,(®) (4
in the sense of Hausdorff convergence of closed sets.

The result (4) shows how to estimate consistently the

-set of all stationary GRF with the same parameter 8 as

the underlying one. Then one can asymptotically detect
phase transition from a single sample. More practical
versions of (4) may be given, and studied via simulation
experiments.
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Large deviations and the rate distortion theorem for Gibbs
distributions

Yali Amit!
Department of Statistics, University of Chicago, Chicago IL, 60637 USA

Abstract — Large deviation theory is used to obtain
the rate distortion theorem for Gibbs distributions
together with exponentially small error probabilities.

Let o be a Gibbs distribution on F * with finite range in-
teraction and Qg finite. For simplicity we assume that o is
unique. For any domain G C Z? containing the origin, define
Rac(w) = 5, 5 Swgyer where G CC A C Z?. Large devi-
ation theorems Tl] provide asymptotically exponential upper
and lower bounds on the probability that the empirical dis-
tribution Ra G(w) under o, deviates in variational norm from
the marginal oG of o on G, as A tends to infinity. In particular
these hold if & is a product measure. Using these theorems
many of the standard asymptotic results of errorless coding
theory can be neatly formulated and extended to Gibbs ran-
dom fields, see [2].

Here we present the application of these theorems to coding
with distortion, more or less following the proof in [3]. Let
I(-,+) be some distance on o and define

1
A(wa, w;\) = |—A—| Z l(waz, w_f,)

€A

Given 6 > 0 and )\ > 0, what size codebook is needed so that
with very high probability a random sample wy from o will
find a code word wh such that A(wa,w?) <A+ 6?

Let A, be an increasing sequence of n x n domains . Fix
1 and set kn, = n/l. Henceforth the n subscript is omitted
for notational ease. Let Gij,i,57 =0,...k — 1 be the k% non-
overlapping I x ! domains in A. Set G = Goo. Let Qwglwa)
be a conditional probability distribution, and Q(wg,wg) =
06{wc)Q(wi|ws) be the joint probability on 0§ x Q. The
marginal on the second coordinate is denoted Q2(wg). Define

Ao = Z Mwe,ws)Q(wa, ws)
_ _]‘ ' Q(w&'wG)
Rol@) = g 2 Oerblee g )

Thus Ag is the expected distortion under the joint distribu-
tion, and Rg(Q) is the average mutual information of the two
coordinates.

For any two distributions og, 7 on Qs let log — 7a| =
maxoe log(we)—7a(wa)|. Let Ra,c(w) be the block empirical
distribution on 5, considering only disjoint blocks. Apply-
ing the large deviation theorems to block Gibbs distributions
where each disjoint G block is aggregated as one site we get
that outside a set Bea of exponentially small probability in
n?, the frequency of occurence n(wg) of a specific configura-
tion wg, without overlaps, in wa is within € of its underlying
probability, oc(wa).

1This work was supported by Grant ARO DAAL03-92-G-0322.
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For ug € QF let c(ug) = ZWG AMug,we)Q(uc,ws)/Aq-
For each domain G;; choose “’:3.‘,' independently from the dis-
tribution @2, to obtain another configuration wj from the
product distribution Q = ®ﬁj=1 Q2(-) on Q*. Let wp be a con-
figuration in B{ . Using the fact that [n(ug)/k* —oa(uc)| <
¢, the probability that AMwa,wy) < Ag + 6 is bounded below
by

H Q;(uc)(ﬁal?) Z /\(uc;ij,wlc;ij)fﬂ(uG)>!

n(ug)>0 Gy TUG

where f(ug) = c(ua)(Aq + 8/2)/(0c(uc) — €).

Using large deviation results for i.i.d distributions, given
arbitrary v > 0, for sufficiently large k, each term in the above
product is bounded below by exp[—k*(cc(uc) + €)(J(uc) +
7], where J(ug) = inf peug) D(7a, Q-) is the infimum of RKL
divergences with respect to Q2 over the set of measures

. . Ao +6/2)

raey = fros [ Moo wymo(duy) < 2022 82))
(us) {WG,/ (ug,we)Te(dws) < ro(ug) —¢ }

From the choice of c(ug) it follows that the conditional distri-

bution Q(-Juc) € F(uc). Aggregating this over all ug’s found

in wp we have

.1
]M_;;log Q(/\(wA,w}\) <Ag+ 6) > RG(Q) _ 7/’

with v' = 0 as e — 0.

Taking L = exp [n2(RG(Q)+7' +7")] with 4" > 0, choose
L independent samples v§, @ = 1,..., L, from Q. Using the
lower bound above, it is easily shown that with probability ex-
ponentially close to 1, every element of B 5 is within distance
less than Mg + & from at least one of the »3 in the random
sample, and ¥’ — 0 as € — 0.

Theorem: There exist constants c,d,a, 8 > 0 such that
with probability 1 - ce~™"® a random choice of [ independent
samples from the distribution Q on * will provide a codebook
of rate (Rg(Q)+~'+~") per pixel, for which any configuration
wa € B¢y, has a codeword va such that Alwa,va) < Ag + 6,
and o(Bea) < de="°P. Moreover 7',v" — 0 as ¢ — 0 so
that it is asymptotically possible to code samples from o with
minimal rate

Ro(3) = inf{Ra(Q)iAe <A} o

Observe that this rate distortion curve depends on the base
domain G. The larger G the lower the rates will be for fixed
distortion.
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Estimation and Prediction for (Mostly Gaussian) Markov Fields in
the Continuum

Loren D. Pitt!
Mathematics Dept., Univ. of Virginia, Charlottesville, VA 22903, USA

Abstract — We present a survey of design problems
and results that arise in the prediction and parameter
estimation of stochastic partial differential equations.
The aim is to better understand some unavoidable
errors that occur in the discretization of SPDEs, and
available methods for minimizing these errors.

I. INTRODUCTION

Solutions to many prediction and estimation problems associ-
ated with continuous Gaussian Markov fields satisfy minimum
principles and may be characterized as solutions of stochastic
boundary value or initial value problems, see e.g. [1], [2], [3],
and [4]. These characterizations provide a theoretical basis
for the calculation, but in the implementation of these calcu-
lations numerous issues arise. A typical problem may involve
a smooth elliptic boundary problem on a smooth domain, with
boundary data that must be empirically determined, but typi-
cally this data will be generalized functions and can not be in-
terpreted as classical functions. A careful analysis is required
to determine the relative merits and limitations of different
discretizations of such a problem. This paper presents ex-
amples which illustrate these issues, and where the required
analysis has, at least in part, been completed.

II. A GENERAL DESIGN PROBLEM WITH AN
ILLUSTRATIVE EXAMPLE

Consider a random field {¢(t,x) : t € R,z € R%} that cannot
be observed on a restricted set D C R x R%. It is desired to
observe ¢ off the set D, and, based on these observations, to
calculate the conditional expectation ¢p(t,z) for (t,z) € D.
Of course, in fact, ¢ can only be observed on a finite set of N
times and places (t;,z;) € D, and N may be very limited. The
following questions arise in considering the merits of designs
and computational recopies. If N is fixed, what is the smallest
possible prediction error e*(x, N), and what is the limiting
value e2(z,00) 7 What are the asymptotics of

62(1:’ OO) - eZ(z’ N)
and of

e?(z,00) — e(z, N) 0
e?(z, N) ’

Where should the N sites {(t;,z;)} be located to approxi-
mately achieve the minimum error e*(z, N)?

The simplest illustrative special case for these problems
occurs in the time independent d = 2 case when ¢ satisfies
the elliptic SPDE

¢(z) — Ad(z) = (),

with w(z), a Gaussian white noise in the plane. In this case,
when D C R? is a bounded domain with smooth boundary T',
typical results are

LSupported ONR Contract No. N00014-90-J-1639.
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A. )
(I-AYép(z)=0

for all z € D, and A&p satisfies the boundary conditions
¢p(z) = ¢(z) and B.dp(z) = Fnd(z) on I

B.
82(2), OO) = Gp(x, Z),

where Gp(z,y) is the Green’s function for (I — A)? on the
domain D.

A careful analysis of the errors made in discretizing the
Poisson integral representation of ¢p in A yields, see [4], [5],

C.
e*(z,00) — e*(z, N) = 1/N,

together with precise numerical constants and asymptotically
optimal locations for the sites {z;}.
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Markov chain Monte Carlo algorithms

by

Jeffrey S. Rosenthal*
Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Phone: (416) 978-4594.

Abstract. We briefly describe Markov chain Monte
Carlo algorithms, such as the Gibbs Sampler and
the Metropolis-Hastings Algorithm, which are fre-
quently used in the statistics literature to explore
complicated probability distributions. We present a
general method for proving rigorous, a priortbounds
on the number of iterations required to achieve con-
vergence of the algorithms.

I. Introduction.

Markov chain Monte Carlo techniques have be-
come very popular in recent years as a way of gener-
ating a sample from complicated probability distri-
butions (such as posterior distributions in Bayesian
inference problems). The idea of such algorithms is
to define a Markov chain which has as its stationary
distribution, the distribution 7(-) of interest.

Procedures for defining the Markov chain in-
clude the Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970), whereby the Markov
chain proceeds by “proposing” a new point accord-
ing to some scheme, and then “accepting” that point
with a certain probability, chosen to make the Markov
chain reversible with respect to #(-); and the Gibbs
sampler (Geman and Geman, 1984; Gelfand and
Smith, 1990), whereby the Markov chain proceeds
by updating the various coordinates of the point in
turn according to the correct conditional distribution
as indicated by 7 ().

A fundamental issue regarding such techniques
is their convergence properties, specifically whether
or not the algorithm will converge to the correct dis-
tribution, and if so how quickly.

II. A quantitative convergence result.

We describe here a general method (Rosenthal,
1993, Theorem 12) for proving quantitative bounds
on the time to stationarity of a Markov chain. The
method requires only that we verify a drift condition
and a minorization condition, for the Markov chain
of interest. In certain simple cases, the bound ap-
pears to be small enough to be of practical use; see
Rosenthal (1993, 1994) and references therein. For
related results see Meyn and Tweedie (1993).

* Supported in part by NSERC of Canada.
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Proposition. Let P(z,-) be the transition proba-
bilities for a Markov chain with stationary distribu-
tion m(+). Suppose there exist ¢ > 0,0 <A <1,0<
A<oo,d> 12__—‘\)\, f: X — R2° and a probability
measure Q(+) on X, such that E(f(X;)| Xo=2) <
M(z) + A forz € X, and P(z,-) > €Q(:) for
z € f4, where fg = {z € X|f(z) < d}. Then for
any 0 < 7 < 1, the total variation distance to the
stationary distribution after k iterations is bounded

above by

(1—6)’"'°+(oz_(l—r)vr)lc (1 + l—j_\—/\ + E(f(Xo))> ;

where o™ = ki‘—%dl')‘—d, v = 14+2(Ad+A).
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I. Introduction

The use of model-based methods for data compression for
English dates back at least to Shannon’s Markov chain (n-gram)
models, where the probability of the next word given all previ-
ous words equals the probability of the next word given the pre-
vious n-1 words. A second approach seeks to model the hierar-
chical nature of language via tree graph structures arising from a
context-free language (CFL). Neither the n-gram nor the CFL
models approach the data compression predicted by the entropy
of English as estimated by Shannon and Cover and King. This
paper presents two recently proposed models that incorporate the
benefits of both the n-gram model and the tree-based models
[1,2]. In either case the neighborhood structure on the syntactic
variables is determined by the tree while the neighborhood struc-
ture of the words is determined by the n-gram and the parent
syntactic variable (preterminal) in the tree. Having both types of
neighbors for the words should yield decreased entropy of the
model and hence fewer bits per word in data compression. To
motivate estimation of model parameters, some results in esti-
mating parameters for random branching processes is reviewed.
II. Random Branching Processes

A stochastic context-free grammar (SCFG) is a quintuple
< Vu, Vi, R, 64, P >, where Vy is the set of V syntactic variables
o, Vy is the finite set of words or terminals, R is the finite set of
rules, oy is the starting syntactic variable, and P is the set of con-
ditional probabilities for the rules, conditioned on the syntactic
variable being rewritten. The probability of a derivation from
the SCFG is the product of all of the probabilities used in the
derivation. A tree T is associated with a derivation by mapping
syntactic variables used in the derivation to nodes in the tree; the
rule used for rewriting each syntactic variable determines the
children nodes. Define the mean matrix M to have its j, k entry
equal to the expected number of o, that result from rewriting o;.
M has largest eigenvalue p greater than or less than one accord-
ing to whether the SCFG is supercritical or subcritical.

A function of a tree, f, is said to be additive on the rules with
atomic function 7 if f(T) =Y, f(r), where the sum is over the
rules » used. Let n(T) equal the number of syntactic variables in
the tree T. Assume that f is finite for all » € R. Let Ty be the
truncation of T at derivation depth K.

Theorem 1 [3]: Suppose that M is strongly connected with

largest eigenvalue p > 1 and associated left eigenvector v. Then
for almost all infinite length derivations,

f(Tx) &

fim g = 2V ): pi.OFGI=vE, O
where J; is the number of rules in R(i), the set of rules for
rewriting o;; p(, k) is the probability of that rule; T is the V x 1
vector with ith entry Yo', p(i, k) F (i, k).
Extensions of this theorem include the convergence of ratios of
such functions [3]. Notice that f(Ty) and n(Ty) are derivation
statistics that can be used to estimate model parameters via (1).
The SCFG’s used to model English are usually subcritical. The

47

corresponding result requires a sequence of independent deriva-
tions from the SCFG.

Theorem 2: Suppose that M has largest eigenvalue less than

one. Let {T"™} be a sequence of independent trees each having
distribution determined by the SCFG. Then

: 1 M (m)\ _ -~1p
Jm 57 2 fO) =@M, )

where z, is the 1 X V unit vector with entry one in the location
corresponding to the syntactic variable oy,.
III. Proposed Language Models

The first proposed language model adds n-gram constraints to
the tree-based models. For a given word string (sentence)
Wy = wyw, -+ wy, define the relative frequency of w;@; by

o0 {Win) 1 Ml
T T NI 2 e e W) ©

Theorem 3 [2]: The probability distribution on trees T, p, mini-
mizing the Kullback-Leibler distance from the distribution #

defined by the SCFG, Y, p(T)log —Q, subject to the bigram

(T)
constraints E[na,,,,,i(WI,N)/(N -Dl= ,,,j,,,,., oj,0; € Vr,is

1
PD=Zexplm—— T T auunanW, D @

-1 w;eVr ojeVr

where Z is the normalizing constant and the Cyjo; arE the
Lagrange multipliers chosen to satisfy the constraints.

The distribution (4) induces the neighborhood structure dis-
cussed in the introduction. As with many random field models,
computing Z is problematic. This motivates a second model, the
mixed tree/chain graph. In this model, let T be the tree down to
the preterminal layer, and label the preterminals for a particular
derivation by ¥, k=1,2,..., N;. The probabilities of words
are determined by conditional probabilities on the words,
p(wilw_1, 7:), and the SCFG down to the preterminal level.

Issues that are under investigation include: the decrease in
entropy obtained by using successively more complicated mod-
els; comparative performance of different models as a function
of the number of parameters; estimation of parameters in the two
proposed models using the Penn TreeBank; determining the
compressibility of the Penn TreeBank using our models.

1. M. I. Miller and K. E. Mark, "Inference on Pattern Theoretic
Representations: Applications to Shape and Natural Languages,"
to appear Proc. IMA Workshop on Image and Speech Models,
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2. K. E. Mark, M. L. Miller, U. Grenander, and S. Abney,
"Parameter estimation for constrained context-free language
models,” in Proc. DARPA Speech and Natural Language Work-
shop.New York: Morgan Kaufman, 1992.

3. J. A. O’Sullivan and M. 1. Miller, "Almost sure convergence
for functions of random branching processes," to appear IEEE
Trans. Inform. Theory, 1995.



Equilibria in Infinite Random Graphs

Bruce Hajek *
Coordinated Science Laboratory and the

Department of Electrical and Computer Engineering

University of Illinois, Urbana, Illinois 61801, USA

Abstract — A load balancing problem is formu-
lated for infinite networks or graphs. There are
overlapping sets of locations, each set having an
associated possibly random amount of load to be
distributed. The total load at a location is the
sum of the contributions due to the sets that
contain it. Equilibrium is said to hold if the
load corresponding to any one set cannot be re-
assigned to improve the balance of total loads.
The set of possible equilibria, or balanced load
vectors, is examined. The balanced load vector
is shown to be unique for Euclidean lattice net-
works, in which the sets correspond to pairs of
neighboring nodes in a rectangular lattice in fi-
nite dimensions. A method for computing the
load distribution is explored for tree networks.
An FKG type inequality is proved. The concept
of load percolation is introduced and is shown to
be associated with infinite sets of locations with
identical load.

SUMMARY

A balancing problem is specified by a collection
(U,V,N, m), where U and V are finite or countably in-
finite sets, N = {N(u) : u € U} where N(u) is a finite
subset of V for each u € U, and m = (my : u € U)
where m, > O for all u. For example, U may denote
the edges of a (possibly infinite) graph, V the vertices,
and N(u) the set consisting of the two endpoints of
edge u for each u. An assignment vector is a vector
f = (fuw : u € U, v € V), with nonnegative entries. It
is said to meet the demand m if

Z fu,v = My

vEN(u)

for u e U, 1)

The total load at v, z(v), is given by

z(v) = Z fuyv

uelU

forveV. (2)

A vector £ = (z(v) : v € V) so arising from an as-
signment vector f meeting the demand is called a load

*This work was supported by JSEP Contract N00014-90-
J-1270
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vector. A load vector z is said to be balanced, if for
some corresponding f, the following conditions hold:
For all u € U and all v,v' € N(u), fu,» = 0 whenever
z(v) > z(v').

The main questions addressed in this paper can be
stated in broad terms as follows. How can the set of
balanced load vectors be characterized? It is not difficult
to show that balanced load vectors exist, but are they
unique? What is the distribution of the load at a given
location for a balanced load vector when the demand
vector is random? Finally, what “global” or long-range
effects can be observed in balanced load vectors?

The highlights of this paper are summarized as fol-
lows. The concept of load balancing on an infinite net-
work is introduced (in somewhat more generality than
the above). Minimal and maximal balanced load vectors
are shown to exist, and the idea of load balancing in fi-
nite subsets with boundary conditions is used to exhibit
a one-parameter family of balanced load vectors when-
ever the balanced load vector is not unique. It is shown
that the balanced load vector is unique for a wide class
of networks including rectangular lattice networks. The
concept of 7-surplus is used to characterize the possible
distributions of the load at a location in a tree network
with independent, identically distributed demands. The
case of Bernoulli demand and exponentially distributed
demands are investigated in some detail. Finally a no-
tion of long range interaction, load percolation, is intro-
duced. Load percolation is shown to imply the existence
of infinite connected sets of locations with identical load.
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Selection of Best Bases for Classification and Regression
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Abstract — We describe extensions to the “best-
basis” method to select orthonormal bases suitable
for signal classification (or regression) problems from
a collection of orthonormal bases using the relative
entropy (or regression errors). Once these bases are
selected, the most significant coordinates are fed into
a traditional classifier (or regression method) such
as Linear Discriminant Analysis (LDA) or a Clas-
sification and Regression Tree (CART). The perfor-
mance of these statistical methods is enhanced since
the proposed methods reduce the dimensionality of
the problems by using the basis functions which are
well-localized in the time-frequency plane as feature
extractors.

I. SUMMARY

The best-basis algorithm of Coifman and Wickerhauser [3]
was developed mainly for signal compression. This method
first expands a given signal into a dictionary of orthonormal
bases, i.e., a redundant set of wavelet packet bases or local
sine/cosine bases having a binary tree structure. The nodes
of the tree represent subspaces with different time-frequency
localization characteristics. Then a complete basis called a
best basis which minimizes a certain information cost func-
tion (e.g., entropy) is searched in this binary tree using the
divide-and-conquer algorithm. This cost function measures
the flatness of the energy distribution of the signal so that
minimizing this leads to an efficient representation (or coordi-
nate system) for the signal. Because of this cost function, the
best-basis algorithm is good for signal compression but is not
necessarily good for classification or regression problems.

For classification, we need a measure to evaluate the dis-
crimination power of the nodes (or subspaces) in the tree-
structured bases. There are many choices for the discrim-
inant measure D (see e.g., [1]). For simplicity, let us first
consider the two-class case. Let p = {pi}l;, ¢ = {g:},
be two nonnegative sequences with Y p; = > ¢; = 1 (which
can be viewed as normalized energy distributions of signals
belonging to class 1 and class 2 respectively in a coordi-
nate system). One natural choice for D is relative entropy:
D(p,q) 2 >oi . pilog(pi/g:). If a symmetric quantity is
preferred, one can use the J-divergence between p and g¢:
J(p,q) 2 D(p,q) + D(q,p). The measures D and J are both
additive: for any j, 1 < j < n, D(p,q) = D({pi}y, {a: Hoy) +
D({pi}i=j+1,{qi}i=;j+1). For measuring discrepancies among
L distributions, one may take (g ) pairwise combinations of D.
The following algorithm selects an orthonormal basis (from
the dictionary) which maximizes the discriminant measure on
the time-frequency energy distributions of classes. We call
this a local discriminant basis (LDB).

Algorithm 1 Given L classes of training signals,

Step 0: Choose ¢ dictionary of orthonormal bases (i.e., specify
@MFs for a wavelet packet dictionary or decide to use either
the local cosine dictionary or the local sine dictionary).
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Step 1: Construct o time-frequency energy map for each class
by: normalizing each signal by the total energy of all signals of
that class, ezpanding that signal into the tree-structured sub-
spaces, and accumulating the signal energy in each coordinate.
Step 2: At each node, compute the discriminant measure D
among L time-frequency energy maps.

Step 3: Prune the binary tree: eliminate children nodes if the
sum of their discriminant measures is smaller than or equal
to the discriminant measure of their parent node.

Step 4: Order the basis functions by their discrimination
power and use k(<€ n) most discriminant basis vectors for
constructing classifiers.

For regression problems, we use the same algorithm by
modifying Step 2 and 3 above. In Step 2, we compute the
prediction (or regression) error at each node instead of the
time-frequency energy distributions. In Step 3, we prune the
binary tree by comparing the prediction errors of each par-
ent node and the union of its two children nodes: eliminate
the children nodes if their prediction error is larger than their
parent node. We call the basis so obtained a local regression
basis (LRB). One disadvantage is that the prediction error is
not an additive measure so that the algorithm is slower than
the LDB algorithm.

We tested our method using the triangular waveform classi-
fication (three-class problem) described in [2]. We first gener-
ated 100 training signals and 1000 test signals for each class.
Then, we supplied the raw signals to LDA and CART and
obtained the misclassification rates 20.90%, 29.87%, respec-
tively, using the test signals. Finally, we computed the LDB
from the wavelet packet dictionary with the 6-tap coiflet fil-
ter, and supplied five most discriminant coordinates to LDA
and CART. The misclassification rates become 15.90% and
21.37%. Note that the Bayes error of this example is about
14% [2]. The details as well as other examples and applica-
tions of LDB/LRB can be found in [4], [5], and [6].
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Abstract — A brief discussion is given of the role of
approximation and smoothness spaces in algorithms
for noise removal and compression.

1. INTRODUCTION
Compression and noise removal can be viewed as problems of

approximation. Because of space limitations, we limit our dis-
cussion to cases where approximation takes place in a Hilbert
space H although the theory applies in far greater generality.
Let {¢»}rea be a a complete orthonormal system for H.

II. LINEAR AND NONLINEAR APPROXIMATION
In linear approximation, we approximate by the elements of
the linear spaces X, := span{¢}rea,, An C Ant1 CA,
n=1,2,.... If f =3 .5 Créx then Yoxen, CAPA Is its best

approximation from X, and En(f) = (ZMEA" lea]?)Y/2 the
approximation error.

In nonlinear approximation, we fix a number n > 0 and ap-
proximate f by Y, o eadx, where Ag is an arbitrary subset
of A with 2" elements. The best nonlinear approximation is
obtained by taking Ao as the set of the 2" indicies X for which
leal is largest. We denote the nonlinear approximation error

by O'n(f)~

III. APPROXIMATION SPACES
What elements f € H can be approximated well by these

methods. For example, what elements have an approximation
error like O(2™™*). For a > 0, 0 < ¢ < o0, let Ag (L) denote
the set of f € ‘H such that Y . [2"*Ea(f)]? is finite with
the usual change to a sup when ¢ = co. We replace En( H
by on(f) to get the space A7 (N). Then, f is in A$ (L) if and
only if 35.5112" (X reansi\An lea]?)/3)7 is finite. We can
characterize A2 (N) only for special ¢, namely, ¢ = (a+1/2)71
in which case f is in this space if and only if ZAGA lea]? is
finite.

IV. EXAMPLES

Let H = Lo (') be the space of 2r-periodic functions on the
torus and ¢ = ek, k € Z¢, with ex(z) = eFT k€ Zze,
the complex exponentials. We take An := {k : k| < 2"}
Then, the linear approximation problem corresponds to ap-
proximation by the partial sums of the Fourier series of f and
f € A%(L) if and only if f is in the Besov space B3 (L2 r4)
(when g = 2, a = 7 is an integer, this is equivalent to f in
the Sobolev space W (Lz2(I'®)). For nonlinear approximation
by complex exponentials, f € AZ(N),a>0,9g=(a+ 1/2)7!
if and only if ), za |f(k)|9 converges; e.g., if @ = 1/2, the
Fourier series of f should converge absolutely (Stechkin’s cri-
teria).

Another important example is when A, = {k € Z?
|k1 - ka| < n} is the hyperbolic cross. In this case, A5 (L)
is a Besov like space with the usual modulus of smoothness
replaced by a mixed modulus [1].

1This work was supported by ONR Contract N0014-91-J1343.
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V. WAVELETS EXAMPLES
Let H = L2(JR) and ¢ € H be a univariate scaling function

with orthonormal shifts ¢(- — 7), j € Z, which generates the
orthogonal wavelet 1. The functionsy; x = 2/ 21/)(2’c - —7),
j, k € Z are a complete orthonormal system for H. For Ay :=
{(,k) : j € Z,k < n}, the AZ(L) are again Besov spaces
BZ(L2(IR)) for a range of depending on 7. The nonlinear
approximation spaces Aj(N) are the Besov spaces By (Lg)
provided q = (o + 1/2)7"/% [2].

There are various multivariate orthonormal basis for
L(IR%) which can be constructed from ¢ and 9. For example,
if d = 2, the usual orthogonal basis used in wavelet applica-
tions consists of the functions 7j,.x(%)7jz.6(¥), J1,72,k € Z,
with 7,7 either ¢ or ¥ but not both ¢. The approxi-
mation classes for linear approximation by partial sums of
wavelet series with respect to this basis are Besov spaces
AZ(L) = BZ(Lz(IR?)). For nonlinear approximation Ag (N) =
B (Lo(IR%), a = (a/2+1/2)7"

Another wavelet basis, useful in some applications, is given
by the tensor products ¥, k; ()¥iz k2 (y), 1,92, k1, k2 € Z.
Linear approximation here is analogous to hyperbolic cross
Fourier approximation (3].

VI. K-FUNCTIONALS ,
If Y C X are two Banach spaces and f € X, then

K(f,t,X,Y) = inf=piq Il x + tlglly, t 2 0is called the
K-functional of f. The K-functionals for many classical pairs
of spaces are characterized. K-functionals can be used to de-
sign (optimal) compression and noise removal algorithms (2].
For example, if X = L2(Q) and Y = W7 (L2(Q)) with © C R?
a cube or all of IR?, then the best choice g for fixed t is given
by linear approximation (for example using the first wavelet
basis in Sect. V). If Y = W™ (L2(Q2) is the space of functions
with mixed 7-th derivative, a best g is given by linear hyper-
bolic (or tensor product) approximation. If Y = By (Lqe(Q2)),
qg=(a/d+1/ 2)~1, then g is given by nonlinear wavelet ap-
proximation. These choices of g give linear or nonlinear com-
pression algorithms optimal for corresponding function classes
2]

In noise removal, one uses the K-functional for noisy f; each
t gives a noise removal algorithm. Minimizing the expected er-
ror with respect to ¢ leads to linear or nonlinear noise removal
algorithms such as wavelet shrinkage (2,4].
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Adaptive Signal Representations: How much is too much?
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Abstract — Recently, adaptive signal representa-
tions in overcomplete libraries of waveforms have been
very popular [1, 5]. One naturally expects that in
searching through a large number of signal represen-
tations for noisy data, one is at risk of identifying
apparent structure in the data which turns out to be
spurious, noise-induced artifacts. We show how to use
penalties based on the logarithm of library complex-
ity to temper the search, preventing such spurious
structure, and giving near-ideal behavior.

I. ADAPTIVE SIGNAL REPRESENTATIONS

Over the last five years or so, there has been an explosion of
awareness of alternatives to traditional signal representations.
Instead of just representing objects as superpositions of si-
nusoids (the traditional Fourier representation) we now have
available alternate dictionaries — signal representation schemes
- of which the Fourier dictionary is only the most well-known.
Wavelet dictionaries, Gabor dictionaries, Multi-scale Gabor
Dictionaries, Wavelet Packets, Cosine Packets, Chirplets, and
a wide range of other representations are now available. Each
such dictionary D is a collection of waveforms (¢ ) er, and
we envision a decomposition of a signal s as

8= Za7¢7- (1)

Yy€r

Depending on the dictionary, such a decomposition is a decom-
position into pure tones (Fourier dictionary), bumps (wavelet
dictionary), chirps (chirplet dictionary), etc.

A key point. The dictionaries we are interested in are all
overcomplete. The decomposition (1) is then nonunique, be-
cause some elements in the dictionary have representations
in terms of other elements. This gives us the possibility of
adaptation, i.e. of choosing among many representations one
which is most suited to our purposes. ’

II. BEST ORTHO BASIS

Coifman and Meyer have invented some time-frequency dic-
tionaries, wavelet packets and cosine packets, which have a
very special structure. Certain structured subcollections of
the elements amount to orthogonal bases; one gets in this
way a wide range of orthonormal bases (in fact > 2™ such
orthogonal bases for signals of length n). Coifman and Wick-
erhauser [1] have proposed a method of adaptively picking
from among these many bases, a single orthogonal basis which
is the best one. If (s[B]:) denotes the vector of coefficients
of s in orthogonal basis B, and if we define the “entropy”
E(s[B]) = 3, e(s[Blr), where e(s) is a scalar function of a
scalar argument, they give a fast algorithm for solving

min{&(s[B]) :

1This work was supported by NSF-DMS-92-09130, and by the
NASA Astrophysics Data Program.
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The algorithm is fast — it delivers a basis in order nlog(n)
time — and in some cases delivers near-optimal sparsity resp-
resentations.

III. CHOICE OF ENTROPY FOR DE-NOISING

Suppose we have observations y; = s8; + z;, © = 1,..,n,
where (s;) is signal and (2;) is i.i.d. Gaussian white noise.
Suppose we have available a library £ of orthogonal bases,
such as the Wavelet Packet bases or the Cosine Packet bases
of Coifman and Meyer. We wish to select, adaptively based
on the noisy data (y:), a basis in which best to recover the
signal (“de-noising”). Let M, be the total number of distinct
vectors occcuring among all bases in the library and let ¢, =
v/2log(M,). (For wavelet packets, M, = nlog,(n).)

Let y[B] denote the original data y transformed into the
Basis B. Choose A > 8 and set A, = (A- (1 + ¢»))®. Define
the entropy functional

£y, B) =) _ min(yf[B],A%).

Let B be the best orthogonal basis according to this entropy:
B=arg minge  Ex(y, B).

Define the hard-threshold nonlinearity 7:(y) = yl{y|>s3- In
the empirical best basis, apply hard-thresholding with' thresh-

old t = +/An: . A
8;[B] = ny x5 (:(B})-
Theorem: With probability exceeding mn =1 — e/Mn,
8" = sliz <(1-8/0)7" - An -min {35 — s|13.

Here the minimum is over all ideal procedures working in all
bases of the library, i.e. in basis B, 35 is just y:[B)l{.,8)>1}-

In short, the basis-adaptive estimator achieves a loss within
a logarithmic factor of the ideal risk which would be achiev-
able if one had available an oracle which would supply perfect
information about the ideal basis in which to de-noise, and
also about which coordinates were large or small.
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Abstract — Long-range dependent processes exhibit
features, such as 1/f spectra, for which wavelets offer
versatile tools and provide a unifying framework. This
efficiency is demonstrated on both continuous pro-
cesses, point processes and filtered point processes.

I. INTRODUCTION
Many signals, in many different domains (solid-state physics,
biology, turbulence, communications, . .. ), exhibit 1 / f spectra
which reveal some long-range dependence (LRD). Although
considering LRD processes is therefore necessary, this remains
a challenging problem (from the point of view of both model-
ing and analysis), thus calling for new approaches capable of
supplementing some of the specific tools developed so far [3].

II. FRACTIONAL BROWNIAN MOTION
Fractional Brownian motion ({Bm) is the first well-known ex-
ample of a continuous and LRD process for which wavelets
proved efficient [4, 5, 8, 9, 10]. The main reasons are as fol-
lows: 1. although fBm is nonstationary, its wavelet transform
is stationary at any scale (this is due in fact to the station-
arity of its increments); 2. the Hurst exponent H of a.fBm
can be deduced from the variance law of details across scales;
3. whereas fBm is LRD, details of a dyadic decomposition
are almost uncorrelated. The effectiveness of using wavelets
for fBm analysis can be further evidenced by a comparison
with more classical techniques devoted to continuous LRD
processes. Given a fBm By(t) for which varBx(t) behaves as
|t|>#, it is known that the estimation of H requires the use
of a refined variance estimator, referred to as the Allan vari-
ance. It turns out that such an approach amounts to using a
Haar wavelet decomposition, with limitations due to the low
regularity of the basis functions [4]. While retaining the same
principle, more regular wavelets offer therefore a way of gen-
eralizing the Allan variance, with an increased performance.

III. FRACTAL POINT PROCESS - FRACTAL SHOT NOISE
Beyond {Bm, wavelets are also efficient for tracking LRDs in
point processes. Let us consider P(t) = ::_w g(t — tx),
where the tx are Poisson distributed, with an intensity A(%).
(The usual Poisson process simply corresponds to g = § and
X/t =0.) A LRD process (referred to as fractal point pro-
cess (FPP) [6]) can be constructed within this model by choos-
ing A(t) to be fractional Gaussian noise (i.e., “derivative” of
a fBm). Starting from the remark that, for the counting pro-
cess N(T) associated to a Poisson process, we have always
varN(T) = EN(T), a departure from Poisson can be revealed
by means of the Fano factor F(T) = varN(T)/EN(T). In
the case of a FPP, F(T) ~ 1+ C.T?¥~" when T is large and
H > 1/2[6). In analogy with the definition of F(T'), a wavelet
based Fano factor WF(j) can then be defined [2], as a function
of scale j, by using both the variance of the details dp[j, n]
and the average of the approximations ap[j, n]. The result is

2H-1
)

WF(j) = (2) 3 Ed%[j, n]/Eap[i,n] ~ 1 + (2')

1fiandrin@physique.ens-lyon.fr, pabry@physique.ens-lyon.fr
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when j is large and the degree of cancellation R is such that
R > H — 1. When using the Haar wavelet in WF and
the Allan variance in the estimation of F, we have exactly
WF(j) = F(2’). Wavelets offer therefore a way of general-
izing the concept of Fano factor and increasing its efficiency
when R is larger than 0. Moreover, the proposed generaliza-
tion allows to deal directly with filtered point processes, what
the Fano factor does not. If we consider for instance the model
of fractal shot noise (FSN) [7], for which A(2) is a constant but
g(t)=1"P if 0 < A <t < B < +oo and 0 elsewhere, we ob-
tain that WF(j) behaves as 277° when 1/4 > 277 > 1/B
(with the only condition R > § — ) [2).

IV. SPECTRAL ANALYSIS OF 1/f PROCESSES
In any of the above cases, the basic ingredient in the analysis
is the variance of the details, which is time-invariant. This
leads to a unified perspective in the frequency domain since
such a variance reads

+ 00
Edi[j,n] =2’ / |®(2’ )| S=(f) df,
—_—00

where S:(f) is the (average) power spectrum of the ana-
lyzed process and ¥(f) the Fourier transform of the analyzing
wavelet. A consequence of this relation is that wavelet anal-
ysis is structurally matched to 1/f spectra and provides an
efficient and unbiased estimation of a, as detailed in [1].
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Wavelet Vector Quantization with Matching Pursuit

G. Davis and S. Mallat!
Clourant Institute of Mathematical Sciences, 251 Mercer Street, NY NY 10012

I. INTRODUCTION

To compute the optimal expansion of signals in redundant
dictionary of waveforms is an NP complete problem. We in-
troduce a greedy algorithm, called matching pursuit, that per-
forms a sub-optimal expansion. This algorithm can be inter-
preted as a shape-gain multistage vector quantization. The
waveforms are chosen iteratively in order to best match the
signal structures. Matching pursuits are general procedures
to compute adaptive signal representations. Applications to
speech and image processing with dictionaries of Gabor func-
tions will be shown, in particular for the removal of noises,

I1. MATCHING PURSUIT

Let H be a signal space. We define a dictionary as a redundant
family D = (g,) . of vectors in H, such that |g, | = 1.
We impose that linear expansion of vectors in D are dense
in H. An example of dictionary is constructed by dilating,
translating and modulating a single window function g(t) of
unit norm. For any scale s > 0, frequency modulation & and
translation u, we denote 4 = (s, u, £) and define

(1) = %m"—“)e‘f'. (1)

8

The index vy is an element of the set T' = R x Rz. The factor

1 . . .
—-\/-= normalizes to 1 the norm of g.(f). If g(t) is even, which
b.

is generally the case, g, (1) is centered at the abscissa u. Its
energy is mostly concentrated in a neighborhood of u. whose
size is proportional to s.

A signal f € H does not have a unique representation as
a sum of elements of a redundant dictionary. A matching
pursuit decomposes f over a set of vectors selected from D,
by successive approximations. Let g,, € D, we decompose

/ =< f' g“ru > g‘YU + Rf’ (2)

where Rf is the residual vector after approximating f in the
direction of y,,. Clearly g, is orthogonal to Rf, hence

171 =1< fog20 > + RS- (3)

To minimize |Rf], we must choose y,, € D such that | <
J.yqy > | is maximum.

Let us explain by induction, how the matching pursuit is
carried further. Let R°f = f. We suppose that we have
computed the nt" order residue R"f, for n > 0. We choose.
with the choice function (7. an element g,, € D which closely
matches the residue R" f

|< R fogrn >| = sup |[< R f,g, >|. (4)
~el

The residue R" [ is sub-decomposed into

R"f=<R"f gy, > gy, + R"T'f, (5)

YThis work was supported in part by the AFOSR grant F49620-
93-1-0102. ONR grant N00014-91-J-1967 and the Alfred Sloan
Foundantion

which defines the residue at the order n+1. Since R*"*!f is
orthogonal to g,

IR fI" = |< R"f.gn, > + R fP (6)

If we carry this decomposition up to the order ni. we ohtain

m=—1

f= Z <R"fi g, > s, + RS (7)

n=0
and the energy conservation

m-=1

I =Y I<R"fogs, >+ IR I (8)

n=0

One can also prove [1] that

lim |R™f}=0. (M
me—koc
This iterative procedure can be interpreted as a shape-gain
vector quantization in a very high dimensional space and is
also equivalent to a projection pursuit [2]. nsed in statistics.
A matching pursuit can be calculated with a fast algorithm
(1] that is described in the talk. In the case of a time-frequency
dictionary of Gabor function, the signal is decomposed as a
sum of time-frequency elements whose scale, position and fre-
quency match the time-frequency structures of the signal. Ap-
plications to noise removal have bLeen developed [1] and we
are currently using this representation for music analysis. For
image processing. we have constructed a dictionary of two-
dimensional Gabor waveforms with an orientation selectivity.
Decomposition of images and application to noise removal will
be demonstrated.
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Multiresolution Models For Random Fields and Their Use in
Statistical Image Processing

H. Krim, A. S. Willsky and W.C. Karl!
Stochastic Systems Group M.I.T. Room 35-437, M.1.T., Cambridge, MA 02139

I. INTRODUCTION

In this paper we describe a probabilistic framework for op-
timal multiresolution processing and analysis of spatial phe-
nomena. Our developed Multiresolution (MR) models are use-
ful in describing random processes and fields. The scale recur-
sive nature of the resulting models, leads to extremely efficient
algorithms for optimal estimation and likelihood calculation.
These models, described below, have also provided a frame-
work for data fusion, and produced new solutions to problems
in computer vision (optical flow estimation), remote sensing
(oceanography where dimensional complexity is in thousands),
and various inverse problems of mathematical physics.

II. RECURSIVE MR MODELS

The stochastic models that form the focus for our work
are defined on a tree T', where we use the index ¢ to denote
a general node of the tree. In our context the nodes of the
tree are organized into levels or resolutions, corresponding to
different resolutions of representation for the phenomenon of
interest. In particular, we can think of the nodes on the tree as
2-tuples, (m(t), n(t)), where m(t) denotes the scale of the node
tand n(t) the spatial location corresponding to that node. In
describing images or 2-D signals, m(¢) and n(t) may be vectors
themselves, describing scales and translational locations in the
two coordinate directions.

The models of interest in our work are scale-recursive
Markov models on T'. Specifically, let 0 denote the root node
of the tree (i.e., the single node at the coarsest scale), let ty
denote the parent of node ¢, and let ta, - ,tep denote the
descendants of ¢ (where in general the number of descendants
may vary from node to node). Then the model is given by

x(t) = A(t)x(ty) + B(Hw(?),

where w(t) is a zero-mean, unit variance, white process on
T which is independent of x(0) and A(t) and B(t) are matrices
that may (and frequently do) vary with ¢ or, at least, m(?).
For example, the modeling of process with particular scaling
laws, such as fractals, typically involve the use of noise gains
that decrease geometrically with scale.

Defined in this way, x(¢) is obviously a Markov random field
on T, and, moreover, given the value of x(t), the values of x(-)
on the numerous disjoint subtrees extending from the node t
are mutually independent. It is this fact that leads directly
to efficient algorithms for multiresolution signal and image
analysis. Specifically, consider the following set of multiscale
measurements:

y(t) = C(t)x(t) + v(b),

1This was supported in part by the Army Research Of-
fice (DAAL-03-92-G-115), Air Force Office of Scientific Re-
search (F49620-92-J-2002) and National Science Foundation (MIP-
9015281).
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where v(t) is a zero-mean, unit variance white noise process
independent of x(¢). Note that this model allows for measure-
ments at multiple resolutions and also allows for nonstation-
ary, sparse and irregular measurements (in which case C(t)
certainly varies with ¢t and is zero except at selected nodes
at which measurements are available). This scale-recursive
model for x(¢) and the associated measurement model for
y(t) admit an extremely efficient algorithm for estimating x(t)
throughout the tree given all of the available data. The fine-
to-coarse processing step computes the optimal estimate at
each node given the measurement at that node and at nodes
in its descendent subtree. Being highly parallelizable and,
thus well- matched to hypercube architectures, the algorithm
is still extremely efficient even on a serial machine.

Note that the total number of nodes in the tree is a rather
small multiple of N (2N for dyadic trees used for 1- D signals
and (4/3)N for quadtrees frequently used in image processing)
and the total computational complexity of the estimation al-
gorithm is O(N) -i.e., in image processing problems, it has
constant per-pixel computational complexity independent of
image size while producing estimates at a full set of resolu-
tions.

III. APPLICATIONS ,

The importance of these algorithms is further marked by the
wealth of physical phenomena and applications whose mod-
els are fraught with a computational complexity which could
otherwise be prohibitive. These algorithms have been very
successfully applied to the problem of “optical flow” estima-
tion from image sequences and where the smoothness penalty
corresponded to a prior fractal model. In addition, a per-
formance similar to that of exact MRF likelihood calculation
has also resulted even in problems where nonstationary phe-
nomena were present. Our latest applications of these meth-
ods involved very high dimensional Oceanography problems
where the processing efficiency of sparse altimetry data from
Topex/Poseidon satellite resulted in maps of of sea level vari-
ations along with error statistics.

Finally, an area in which we believe our methods should
be particularly well-matched, is that of image reconstruction
and inverse problems in which blurred, integrated, or indirect
measurements of a random field are to be used in order to
estimate the field or to perform other tasks such as texture
discrimination, anomaly; detection, etc. In particular we ap-
ply the multiresolution modeling methods ealier developed, to
the problems of modeling the statistical variability of synthetic
aperture radar (SAR) imagery and then using these models
for the discrimination of targets from clutter. We demonstrate
that statistical fluctuations are well- captured by models of the
type that we have described, with significant differences be-
tween the models for clutter and for targets, both in the model
parameters and in the statistics of the scale-to-scale detail pro-
cess w(t) (which is Gaussian for targets and log- Rayleigh for
clutter).
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Neural Network Approximation and Estimation of Functions

Gerald H. L. Cheang!
Dept. of Statistics, Yale University, Box 208290, Yale Station, New Haven, CT 06520-8290

Abstract — Approximation and estimation bounds
were obtained by Barron (1992, 1993 and 1994) for
function estimation by single hidden-layer neural nets.
This paper will highlight the extension of his results
to the two hidden-layer case. The bounds derived for
the two hidden-layer case depend on the number of
nodes T and T in each hidden-layer, and also on the
sample size N. It will be seen from our bounds that in
some cases, an exponentially large number of nodes,
and hence parameters, is not required.

I. INTRODUCTION
A single hidden-layer feedforward sigmoidal network is a
family of functions fr{z) of the form '

T
fr(z,0) =) _ cipla; -z — b),z € R?
i=1

parametrized by 6 = (a;,b;,¢;)M, with internal weight
vectors a; in R?, internal location parameter b; in R,
external weights ¢;, and ¢ any sigmoidal function with
distinct finite limits at +00 and —oco. Such a network has
d inputs, T' hidden nodes and a linear output unit. It
implements the ridge-function ¢(a; - * — b;) on the nodes
in the hidden layer. The network model can be used to
approximate target functions f(z) defined over bounded
subsets of R? and to estimate the function based on data
(X;,Y3)N,, a random sample from a joint probability dis-
tribution Pxy with f(z) = E[Y;|X; = z].

This presentation will be concerned with extensions for
approximation and estimation bounds for two hidden-
layer sigmoidal networks. Such a network takes the form

T T,
frm (@0 = ad(d ajd(wji-z +bj) —di),z € R

i=1 =1

There are T1 nodes in the outer layer and 7> nodes in

the inner layer, giving a total of 77 + 777% nodes. It is
. _ T T

parametrized by 8 = (¢, d;, bji, wji, @ji)i2q ;24 -

II. APPROXIMATION BOUNDS
The approximation bound for the single hidden-layer case
was already obtained by Barron (1992 and 1993) for func-
tion estimation by single hidden-layer neural nets. This
paper will highlight the extensions to the two hidden-layer
case. We will show that by using a family of two hidden-
layer neural nets to approximate a target function, we
are able to approximate some classes of functions that
are not known to be approximable by single hidden-layer
neural nets. Barron’s (1992) L., approximation bound

lemail : cheang@stat.yale.edu
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was O(Cf,ps /\/T) where T is the number of nodes, and
Cy,ns is the variation of the target function with respect
to the half-spaces. We show that two hidden-layer nets
can accurately approximate functions that have bounded
variation with respect to larger classes of sets. For exam-
ple, if the target function f has bounded variation with
respect to a class of ellipsoids, then the Ly approximation
error is

If = fromulle < V/VTL + K/T3/° 1)

where V depends on the variation property of the target
function and K depends on the curvature of the ellipsoids,
when such a function is approximated by a two layer neu-
ral net with 71 nodes in the outer layer and T nodes in
the inner layer. The indicator of a ball is an example of a
function that apparantly cannot be approximated accu-
rately by a single hidden-layer net (with a linear output
unit) but is approximated well with two layers.

III. ESTIMATION BOUNDS

In deriving the estimation bound, the target function is
assumed to be estimated from the data (X;,Y;)Y,, a ran-
dom sample of size N from a joint probability distribution
Pxy with f(z) = E[Y;|X; = z]. Barron’s (1994) result

for the single hidden-layer case was O(—C,'Tz) +O(-Tﬁd log N),
where d in the dimension of the input, N is the sample
size and T is the number of nodes. In our extension to the
two hidden-layer case, the overall mean squared estima-
tion error in terms of the best approximation error, the
dimension of the parameter space mr, 1, and the sample
size IV is bounded by

O(”f - le ,Tzllg) + O(mTl ,TzlogN/N) (2)

In (2), the first term is obtained from (1). It can be seen
from our bounds that in some cases, an exponentially
large number of nodes, and hence parameters, is not re-
quired. Complexity regularization, and a calculation of
an index of resolvability, as in Barron (1994), is used in
the derivation of our estimation bound.
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Markov Chains and Random Walks in Data Communication Receivers

. John W. Craig
Interstate Electronics Corporation, 1001 E. Ball Road, PO. Box 3117, Anaheim, CA 92803

Abstract — For a loss of lock indicator using an
up/down counter, the probabilities of true and false
declarations of in-lock and out-of-lock are calculated.

I. INTRODUCTION

In many data communication receivers up/down counters are
used as a critical part of the processing to determine whether
the symbol timing and/or carrier phase tracking phase-locked
loops are in-lock or out-of-lock, and it is necessary to calculate
thevarious probabilities for true and false indicationsof in-lock
or out-of-lock. A random walk along a line (which is viewed as
a Markov chain) is an exact model of an up/down counter. The
random walk has N states, and in this application one endisa
partially reflecting barrier, and the other end is an absorbing
barrier or sink. Previously published analyses have focused on
findingthe average time to make adeclaration and its variance.
In this paper we concentrate on finding the probabilities of
making a true or a false declaration within a certain number of
symbol intervals or within a certain length of time.

II. CALCULATION OF PROBABILITIES

Two different approaches are required to calculate the desired
probabilities. The first is through the transfer function of the
equivalent signal flow graph of the random walk [1], and the
second is by means of the diagonal form of the tridiagonal state
transition matrix [2] that has been found to have distinct
eigenvalues. Since the random walk has a finite number of
states, the transfer function is, of course, rational. In many
published results of this type, the expression for the transfer
function has a removable singularity, but here we give explicit,
general expressions for the numerator and denominator
polynomials (without common roots) of the transfer functions.
Since the numerical factors in all the polynomial coefficients
are integers, they can be readily and exactly calculated. For a
general random walk along a line, the denominator of the
transfer function satisfies a second-order difference equation
whose solution is the general polynomial mentioned above.

The probabilities of interest are given by the coefficients in the
power series expansion of the transfer function about Z = 0.

60

The coefficientofthem!P powerof Z istheprobability ofbeing
at the chosen position in exactly m steps. It is also given by a
certain element in the mt? power of the state transition matrix
of the Markov chain. Often one is interested in the cumulative
probability or the probability of being at a certain position or
state in any number of steps less than or equal to m. This is
given by the coefficient of the mt? power of Z in the power
series expansion of the transfer function divided by 1-Z.

III. NUMERICAL CALCULATIONS

Calculation of these probabilities is a difficult numerical
problem when the number of states in the random walk is
greater than 10 or so and/or the number of steps is in the
hundreds. The difficulty is compounded when the number of
steps isin the hundreds of thousands or millions, and there are
practical situations where this is required. For the number of
states up to 100 and the number of steps up to 500, it has been
found that the power series expansion capability of
Mathematica does an excellent job in calculating the
probabilities, which are produced as exact fractions when the
state transition probabilities are read in as fractions. For
situations requiring hundreds of thousands of steps, the
eigenvalue expansion or diagonal form of the staté transition
matrix has been used with some success to compute powers of
this matrix. However, with the double precision subroutines
available for making this expansion, the generated orthogonal
eigenvector matrix is often so close to being singular that its
required inverse cannot be calculated reliably; thus this
approach breaks down. At this time it is unknown whether the
singular nature is caused by numerical imprecision or whether
it is inherent in the problem for some values of state transition
probability. However, the former is suspected. Several
numerical examples are given.
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MMSE Parameter Estimation of Exponentially Damped Sinusoids

Hsiang-Tsun Li and Petar M. Djurié
Department of Electrical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

Abstract — An efficient iterative MMSE algo-
rithm that estimates the parameters of exponentially
damped sinusoids embedded in Gaussian noise is pro-
posed.

I. INTRODUCTION

In many engineering and scientific problems the observed
measurements are modeled as exponentially damped sinusoids
distorted by additive noise. A difficult but interesting prob-
lem has always been the estimation of the nonlinear parame-
ters of these signals, the frequencies and the damping factors.
There have been a variety of approaches for estimation, most
of them revolving around the maximum likelihood (ML) prin-
ciple. Here we propose a method that yields the minimum
mean square estimates (MMSE) of the frequencies and damp-
ing factors with all the remaining parameters of the model
being considered nuisance.

II. PROBLEM STATEMENT

We assume that an N x 1 data vector y represents m expo-
nentially damped sinusoids embedded in white Gaussian noise.
In particular, y is given by y = Ha+w where H is an N x2m
matrix whose columns span the signal space, a is a vector of
amplitudes, and w a noise vector with w ~ A(0, 0°I). The
matrix H is defined by

= [slc 815 82¢ 825 *** Smec sms]

skc [1 e %k cos(2nfx) e (V=D cos(2x fi (N — 1)]
sf, =[0 e *ksin(2xfi) e~ (N ="Dgin(2n fi(N - 1)].
All the signal parameters are unknown as is the noise variance
0. Given the observations y, the objective is to estimate the
nonlinear parameters fi and ag, k = 1,2,...m, of the signals.

II1I. MMSE ESTIMATOR

Let the unknown frequencies and damping factors be de-
noted by f and a, respectively. The MMSE estimates are
given by

f’:/ f p(f,a | y)dadf, &:/
fo af

where p(f, o | y) is the a posteriori probability density func-
tion of the frequencies and damping factors. Note that the
amplitudes and the noise variance o> have been integrated
out analytically. The integrals (1) are 2m-dimensional, and
as such, would require reliance on numerical techniques for
high dimensional integration. An alternative is to resort to an
iterative approach similar in philosophy to the expectation-
maximization [1] and alternating projections [2]. To be more

specific, let 1 denote the current iteration, and f;( ), a( ). the

a p(f,a | y)dfda (1)

This work was supported by the National Science Foundation
under Award No. MIP-9110628.
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current estimates of f; and aj, 3 = 1,2,---,m. Then, if we
approximate the a posteriori demnsity p(f, o | y) by

p(f | y) 2 p(fr ok | 9,8y a-m) D [[ 65— F17)8 (s~
s

our 2m-dimensional integrals would reduce to 2-dimensional
integrals. f '_k) and a('_)k denote the estimates at the i-th
iteration of all the frequencies and damping factors except
the ones of the k-th signal. For example, the 2-dimensional
integrals for the frequencies have the form

jO = / P p(fesan | y, 80, 082, Ydondfe.  (2)
frrax

The integrals for the damping factors are similar to (2). The
method is based on solving integrals such as (2) until conver-
gence of the estimates is achieved.

IV. SimuLaTioN RESULT

In the computer experiment we generated two damped si-
nusoids in noise. The amplitude vector was equal to a7 =
[t 0 1 0], the normalized frequencies were f; = 0.16 and
f2 = 0.26, and the damping factors a3 = 0.2 and a2 = 0.1.
The SNR was varied between 5 and 20 dB in steps of 1 dB.
For each SNR we simulated 100 realizations. The two dimen-
sional integration was carried out by an adaptive importance
sampling technique from {3]. The results for f> and a2 are
shown in Figures 1 and 2, respectively. Similar results were
obtained for f; and a;. In each figure, the solid line repre-
sents the Cramer-Rao (CR) bounds, and the other, the mean
squared error of our estimates.
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Adaptive Edge Detection in Compound Gauss-Markov Random Fields Using the Minimum
Description Length Principle

Madrio A. T. Figueiredo

wod Jos. 3. N. Lestao

Instituto de Telecomunicagdes, and Departamento de Engenharia Electrotécnica e de Computadores.
Instituto Superior Técnico, 1096 Lisboa Codex, PORTUGAL

Abstract - Edge location in compound Gauss-Markov
random fields is formulated as a parameter estima-
tion problem; since the number of parameters is un-
known, a minimum-description-length (MDL) crite-
rion is proposed. '

I. INTRODUCTION

Compound Gauss-Markov random field (CGMRF)
models allow for edge-preserving Bayesian image restora-
tion/reconstruction using continuous (Gaussian) statistical
models together with a binary (hidden) edge field [1]. The
CGMRF approach to simultaneous edge detection and im-
age restoration involves two random fields: one (intensity
field) representing the image to be restored and another one
signaling edge elements. To perform joint mazimum a pos-
teriori (MAP) estimation of both the image and its edges,
some prior model has to be specified for the edge process.
This prior is usually not explicitly stated; instead, a joint
intensity-edge prior is directly considered [1], [2], [3].

Our approach does without the specification of any prior
for the line process by adopting a new perspective: we inter-
pret edge locations as (deterministic but unknown) param-
eters of the original image prior model. Locating edges is
then a parameter estimation problem with a salient feature:
unknown number of parameters (edges). This fact places the
problem in a class to which Rissanen’s minimum description
length (MDL) principle has been successfully applied [4].

We propose an MDL-type edge location criterion for
image restoration based on a CGMRF model; it contains
no edge-related parameters, such as detection penalty, which
appear (and have to be specified) in other types of models.

1I. THE MAP EstiMATE AND THE CGMRF MoDEL

Let x be a noncausal CGMRF, modelling the original
image to be estimated, and y a linear observation (LO) of
x, contaminated by additive white Gaussian noise (AWGN).
Let 1 be the (hidden) binary edge field (line process); its
elements, placed on an interpixel dual grid, indicate whether
bonds between elements of x are broken or not. What is
usually sought for is the joint MAP estimate of x and 1, given
y, which is the mode of p(x,1]y) or of p(x,y|l) p(1). Here,
p(y,x|1) is the joint PDF of x and y given a certain edge
configuration, and p(1) the prior of the line process. Notice
that 1 can be seen as a parameter of p(x|l) or of p(x, y[l);
under the CGMRF-LO-AWGN assumptions, these are both
Gauss proability density functions which depend on 1.

111. THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

The MDL principle generalizes the maximum likelihood
(ML) criterion to cases where a parameter vector § of un-
known dimension k is to be estimated [4]. The (joint) MDL
estimate of k and 6, given observed data z, is

(k,8) = argmin {~ log, p(zl6, %) + L(8IE) + L(B)}, (1)
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where L(6|k) and L(k) are, respectively, the code lengths for
9 (given that it is k-dimensional) and for k itself; for further
details see [4] and the references therein. As usual, L(k) is
here considered constant and dropped.

1V. PROPOSED APPROACH

To abandon any prior assumption (expressed in (1)
about the edge field, we interpret edge locations as priorless
parameters of p(x|l).

Let the locations of all (say k) signaled edges be col-
lected in a k-dimensional parameter vector 8. Writing p(x|1)
is equivalent to writing p(x|6, k) since 8 is just a compact code
for 1. In a first order model [1], [2], [3], and taking M x N
size images, we need log,(M N) bits to code each edge loca-
tion plus 1 bit to distinguish horizontal from vertical edges.
Accordingly, L(8]k) = klog,(2M N).

In the presence of both x and y, the MDL estimates of k
and 6 could be obtained by considering z = (x,y) and insert-
ing p(x, yl9, k) = p(y|x)p(x]0, k) (notice that p(y|x,6,F) =
p(y]x)) plus the parameter code length L(8]k) into the MDL
criterion (1). This yields an MDL estimation criterion for k
and 8 (i.e. the number of edges and their locations):

(k,8) = arg min {klog,(2M N) ~ log; p(x,¥l6, b)}.  (2)

The criterion specified by (2) has an intrinsic difficulty
lying in the fact that x is not observed (is missing); i.e. it
can be classified as MDL parameter estimation from incom-
plete data. To deal with (2), we have developed a modified
version of the ezpectation-mazimization (EM) algorithm [5];
further details are presented in [6]. Although it is a subop-
timal scheme, the results obtained show the ability of the
proposed criterion to adapt to the image edge structure [6].
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Maximized Mutual Information Using Macrocanonical Probability Distributions

Robert L. Fry
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Abstract — A maximum entropy formulation leads to a neural
network which is factorable in both form and function into
individual neurons corresponding to the Hopfield neural model.
A maximized mutual information criterion dictates the optimal
learning methodology using locally available information.

I. INTRODUCTION

A biological model is developed here in which neurons
computationally realize a multi-dimensional hypothesis testing
function implemented on a neural field Q={q, ¢, ... gy} of
propositions yeB¥, B={0,1}, MeZ which become defined
through learning. Each neural output y, describes a conjunctive
component of a compound proposition g=y,"y,"ys"..."yy posed
to observed input originating from arbitrary sources. Answers
represent decisions which are in turn provided as individual
neural output indications (action potentials). Learning within the
neural field is realized by the definition of the elemental
propositions which in turn correspond to those propositions
which serve to maximize the channel capacity between input
ensembles and the ensemble of recalled states. The operational
objective of the field corresponds to the search for global
minima of a quadratic energy function E,=YLe, which
parameterizes the a posteriori Gibbs distribution as conditioned
on the input vector cue. The negative of the respective neuron
energies -e; correspond to the statistical evidence using in
determining the probability of generating an action potential.

II. MAXIMUM ENTROPY (ME) FORMULATION

It is assumed that the neural field Q is capable of
extracting information from external inputs xeB" and its own
outputs y through a set of sampling functions F. The field Q
uses the sampled data to estimate moments on the defined
sampling functions which it in turn uses to form the joint ME
distribution P(x,y). As such, this probability is a property of
the observing ensemble Q as it should be since probability is
deemed to be a property of the observer [1]. The computed
moments serve to realize P(x,y) as a unique network ME
distribution or equivalently a Gibbs distribution parameterized
by synaptic connection weights which are in fact the Lagrange
multipliers for the ME distribution.

II1. MAXIMIZED MUTUAL INFORMATION (MMI)
The Gibbs Mutual Information Theorem as derived in
[2] is applied to the composite network distribution which then
serves to constrain the network architecture and signal
processing required to approximate the MMI criterion between

the input ensemble x and the output ensemble y.

The use of an MMI criterion serves to optimize the
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storage capacity of the network which is given by the entropy
H(y) of the network storage capacity. H(y) has a theoretical
maximum of M bits which can asymptotically be obtained using
the MMI criterion. This value can change once dynamical
considerations are included. Degradation of the storage
capacity due to input noise is not considered here, but has been
considered elsewhere. Degraded decipherability of the input
code by an observer of the output neural code trying to guess
the input code can be attributed to either noise, the many-to-one
compression imposed by the condition that N>M, or both.

IV. RESULTS

Together ME and MMI lead to a neural field which is
factorable in both form and function into component
computational entities which correspond to the Hopfield neuron
model ([3]) including decision threshold, action potential
realization, Hebbian learning, sigmoidal transfer characteristic,

-and conditionalized principal component analysis using a simple

modification of an equation originally described by Oja [4].

A diffusion-based search scheme using Langevin’s
equation in conjunction with the neural field energy E, is shown
to lead to the FitzZHugh-Nagumo neuron activation model.
Synchronous activation patterns observed in "biological
assemblies of neurons can then be described as an asymptotic
periodic Markov chain realized through a Gibbs-sampler
computational paradigm. Quantitative details of this process are
alluded to.
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Sample Path Description of Gauss Markov Random Fields 1
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Abstract — We provide a characterization of Gauss
Markov random fields in terms of partial differential
equations with random forcing term. Our method
consists of obtaining a concrete representation of an
abstract stochastic partial differential equation using
some results from the theory of vector measures.

I. PRELIMINARY BACKGROUND
To fix notations, let Y,,u € K (K compact subset of R™) be
a random field and let D be an open subset of K. Let T be
the boundary of D. Then it is well known that the field Y, is
Markov with respect to D if

E[YuY, | o(T)] = E[Y. | o(D)E[Ys | o(I)] (1)

where u € D and v € D° and o(T') is the usual germ-field
given by

o(T) = N{c(0): O open and O DT} (2)

Thus D and D¢ are conditionally independent given knowl-
edge of the boundary.

For Gaussian fields , conditioning on o(A) ( A C K) is
projection onto the closed subspace generated by Yu,u € A,
instead of the larger subspace of all L? functions measurable
with respect to o(A) (see [2]). Hence, the Markov property can
be formulated in terms of projection on these smaller Hilbert
spaces. We introduce the spaces

H(K) = closed subspace generated by Yu,u € K (3)

and the corresponding reproducing kernel Hilbert space H{K).
It is well known that H(K) and H(K) are isometrically iso-
morphic through the mapping, J: H(K) — H(K)

JY(t)=EYY: t€ K. (1)

I1. SAMPLE PATH CHARACTERIZATION

We assume that Cg°(K) is demse in H(K). For uw,v €
C$°(K), we can write the inner product of H(K) in the form

<, v >y = (Pu,v) 2 (5)

where P is a differential operator written in the divergence
form (see [3]).

In order to derive a sample path characterization we use
the well known technique for associating a generalized random
field ¢ to our ordinary random field Y through the following
formula

¢(d) = /K Y (u, w)d(u) du. (6)

A generalized random field can be regarded as a linear op-
erator from C§° to a space of L? random variables. With
every generalized field, there is an associated dual field. The

1This work was partially supported by an ONR Grant # N00014-
91-J1001
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dual field ¢* is also a linear operator from Cg° to L? random
variables such that

Bl (u)€"(v)] = /K u(t)o(t) dt ™

Kallianpur and Mandrekar [5] has shown that an ordinary ran-
dom field is Markov if and only if the associated generalized
random field is Markov. This enables us to study the general-
ized random field and then transfer back its properties to the
associated ordinary random field.

Now, the generalized field is Markov if the dual field £* is
local, (see [1]) in the sense that if suppu N suppv = ¢, then
E(6*(u)¢*(v)) = 0. Locality of the dual field implies that
E[¢*(u)¢*(v)] = (Pu,v);. where P is the same differential
operator associated with inner product of the RKHS of the
ordinary random field (see equation (5)).

We know [1] that ¢ satisfies the following abstract equation

E(Pu) =& (u). (8)

We show that the dual of the generalized field is intimately
related to J~' (J is defined in equation (4)). Under some
integrability condition we further show that the mapping J -1
is weakly compact. A weakly compact mapping from L*(u)
to a Hilbert space is Riesz representable (see [4]). Therefore,
we can write equation (8) in the following weak form

/Y(t,w)Pu(t) dt = /e(t,w)u(t) di (9)

where u(t) € Cp°(K).

When the support of u is in D, a subset of K, we relate
£*(u) to minimum mean square error. In particular, we show
that £*(u) lies in the closed subspace generated by (Yu —E[Yu |
o(T)]),u € D. This provides a canonical description which is
analogous to the one provided by Woods [6] in the context of
Gauss Markov random fields on lattices.
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Non-Parametric Discriminatory Power
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ABSTRACT

Discriminatory power is the relative usefulness of a
feature for classification. Traditionally, feature-selection
technigues have defined discriminatory power in terms of
a particular classifier. Non-parametric discriminatory
power allows feature selection to be based on the
structure of the data rather than on the requirements of
any one classifier. In previous research, we have defined
a metric for non-parametric discriminatory power called
relative feature importance (RFI) [1]. In this work, we
explore the construction of RFI through closed-form
analysis and experimentation. The behavior of RFI is
also compared to traditional techniques.

Relative feature importance ranks features based on an
estimate of their relative potential for class separation. A
set of optimal, orthogonal features is extracted from each
possible feature subset, in order to estimate the potential
for separation contained in the subset. The separation
between class-conditional joint feature distributions is
measured in the transformed space. The contribution of
each original feature to the separation in the transformed
space is estimated. Note that the separation contributed is
relative in the sense that the use of the other features in
the subset is taken into account.

Because the features may not be independent, the
method first must determine the optimal subset of
features. The optimal subset of original features is the
smallest subset that yields maximal separation in the
transformed space. Features outside the optimal subset are
assigned an RFI of zero. The features within the optimal
subset are ordered by their estimated contribution. The
rank of a feature is its RFI.

Some critical design choices for RFI are: the feature
extraction technique, the measure of separation in the
transformed space, and the technique used to estimate the
contribution of the original features to separation in the
transformed space.

Rather than calculating RFI based on separation
between the class-conditional joint feature distributions of
the original features, the method uses a non-parametric
feature extraction technique and calculates separation in the
transformed space. Our extraction technique is based on
Fukunaga and Mantock’s non-parametric discriminant
analysis [2]. Briefly, the data is expanded in the
eigenvectors of the ratio of the within-class to the between
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-class scatter matrices. RFI uses non-parametric variations of

within-class and between-class scatter matrices (which use local

k-nearest-neighbor density estimates) and differentially weights
samples based on their distance from the discriminant boundary.

Since many traditional feature-ranking techniques are based on

the marginal distributions of the original features, our examples

include several multi-cluster experiments which cannot be
solved using the marginals, but can be solved using extraction.

The contribution of the original features to separation in the
transformed space is estimated using the Weighted Absolute
Weight Size (WAWS) [1]. WAWS combines information from
the magnitudes of the eigenvectors (which measure the
contribution of the original features to the extracted features)
and the normalized eigenvalues (which measure the amount of
separation in the transformed space contributed by each extracted
feature).

Through closed-form analysis and a series of experiments, we
explore several design choices in the non-parametric feature
extraction algorithm. We compare the algorithm’s performance
for Euclidean vs. Mahalanobis distance calculations, and for
parametric vs. non-parametric scatter matrices for both within-
class and between-class scatter. We consider several algorithms
for calculating the non-parametric scatter matrices and for
measuring separation in the transformed space. Each variant of
the algorithm is evaluated according to several criteria.

A metric for non-parametric discriminatory power is
important for a number of reasons. First, applications exist
where optimizing the performance of an artificial classifier is
the final goal: physicians need to know which test is the most
accurate predictor of a particular disease whether or not they
wish to use a classifier system as a diagnostic aid. Second,
non-parametric discriminatory power can be used to direct
feature search, without first having to select a classifier.
Finally, a classifier, when desired, can be selected based on the
distributional structure of the high-ranking features. All of
these activities are currently undertaken in an ad-hoc fashion by
humans using mapping and projection techniques.
Unfortunately, such techniques are of limited utility in high-
dimensional spaces.

[11H.J. Holz and M.H. Loew, ‘Relative Feature Importance:
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Sci. Pub., in press.
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Shannon-Hartley Entropy Ratio under Zipf Law
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Abstract — We find a formula for Shannon’s-
Hartley’s Entropy Ratio of a text governed by the
Zipf law. The formula is in a good agreement with
real texts. It is asymptotically

loglog| D)\

1
/2+ 1og|D] ’

|D| being the size of the text’s dictionary, lim|[D| =
00.It means that a word to variable length code might
significantly outperform a word to fixed length one
for large dictionaries only.

I. THEORETICAL CONSIDERATIONS
Let T be a text, D be the set of all words of T’ (dictionary),p(i)
be the frequency of the i-th word, ¢ = 1,...,|D|.According to
the Zipf law,
p(i) = A3, 1
A =const,i=1,..,|D|

Obviously,

Ay 1=1 (@)

. The well-known formula for the harmonic sum and (2) yield

1

A= In|D|+

@)
where ¢; = 0, 577... is the Euler constant. Per word Hartley
entropy of T equals log {D|. It is the cost of a per word fixed
length encoding of T' (to within an additive constant). Per
word Shannon entropy of T equals

H=-Y p(i)logp(i) (4)

=1

. Tt is the cost of a per word variable length encoding ofT (to
within an additive constant). By the Euler-Maclaurin relation
between sums and integrals we obtain

2 i D)
Z—i'=—§—+62+0(1), (5)
1=1

where co = 0, 211... ;From (1) and (3)-(5) we get for the ratio
of entropies

H 1 In(In|D| + c1) coln2

€1 -1
GO+gpy) *

loglD| — In|D| In?[D| + c1in| D)
(6)
If lim log |D| = oo, then
H 1 Inin|D]
log |D| 2 + In|D| ™

66

II. EXPERIMENTS

We have the following experimental results up to now.
1.Collected works of Russian poet A.S.Pouschkin. |D| =
21197 words, Theoretical Ratio f5; = 0,710. Real Ratio

Toop] = 0,726
9.The book of R.E.Krichevskii » Universal Compression and
Retrieval”, Kluwer Publishers. |D| = 1900 words, Theoretical
Ratio ng-o—, = 0, 78. Real Ratio :‘5”74 = 0, 80.
3.The book of Y.G.ReschetnjaL "Space Mappings with
Bounded Distortion”, Providence, R.I. | D| = 2000 words The-
oretical Ratio Eﬁﬁ = 0, 78. Real Ratio Ta_;ll-b-[ =0,77.
4.A paper from Siberian Mathematical Journal. |D| = 2100
: s H o _ o _H .
:)vo;gs, Theoretical Ratio 15 = 0,78. Real Ratio 151 =
,79.
5.Another paper from Siberian Mathematical Journal. |D|

= 1600 words, Theoretical Ratio Eﬁ = 0,79. Real Ratio
H
=0,76.

log| D|
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Abstract —

A length n block code C of size 2"% over a finite
alphabet Xo is used to encode a memoryless source
over a finite alphabet X. A length n source sequence
x is described by the index i of the codeword %,(7) that
is nearest to x according to the single-letter distortion
function do(z,%0). Based on the description i and the

knowledge of the codebook C, we wish to reconstruct
the source sequence so as to minimize the average
distortion defined by the distortion function d;(z, %),
where di(z,£1) is in general different from do(z, Zo). In
fact, the reconstruction alphabets zlA"o and A?'l could be
different.

We study the minimum, over all codebooks C, of
the average distortion between the reconstructed se-
quence %;(¢) and the source sequence x as the block-
length n tends to infinity. This limit is a function of
the code rate R, the source’s probability law, and the
two distortion measures do(z, Z0), and di(z,Z1).

This problem is the rate-distortion dual of the prob-
lem of determining the capacity of a memoryless chan-
nel under a possibly suboptimal decoding rule.

The performance of a random i.i.d. codebook is
found, and it is shown that the performance of the
“average” codebook is in general suboptimal. The re-
sulting distortion can in general be improved by con-
sidering i.i.d. codebooks of m-tuples. It is shown that
as m tends to infinity, the performance of the “aver-
age” codebook becomes optimal.

By studying the special case of a Gaussian source
and minimum Euclidean Distance description, i.e.
do(z,%0) = (z — %0)?, we obtain an improved upper
bound on the rate distortion function for a Gaussian
source and an arbitrary distortion measure.

By exploring the analogy between the rate distor-
tion problem and the mismatched channel decoding
problem, we find that for an i.i.d. real-valued source
of second moment o2, a random Gaussian codebook
of size 2"% achieves, for sufficiently large n, an average

2

mean-square-error distortion of 272802, irrespective of

the source distribution.
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SNR Estimation and Blind Equalization (Deconvolution)
Using the Kurtosis

Rolf Matzner and Klemens Letsch
Federal Armed Forces University Munich, Inst. for Commun. Eng. ET 3, 85577 Neubiberg, Germany

Abstract — The underlying mathematical problem
of both, SNR estimation and blind equalization, is the
sum of random processes. It can be shown that it is
sufficient to describe the random processes as well as
their sum by a shape factor of the p.d.f., the kurtosis,
which includes the second and fourth order moment.

I. INTRODUCTION
In the following we concentrate on discrete time signals and

systems, although the algorithms in principle are applicable
to analog systems as well.

A discrete time random process is a sequence of identically
distributed random variables (r.v.) x,. If the random process
is complex, each r.v. consists of real and imaginary part x =
X, + jx; with joint p.d.f. fz(zr,Zi).

II. FORMULATION OF THE PROBLEM
The SNR estimation problem can be described as follows:

Given a wanted signal random process (r) with (joint) p.d.f.
fr(re,7i) and a (statistically independent) noise random pro-
cess (n) with p.d.f. fn(n,,n:), estimate the signal-to-noise ra-

tio-SNR = Sr/Sn just by observation of the sum process -

(y) = (r) + (n). Usually the type of p.d.f. of the wanted sig-
nal (e.g. M-PAM, M-PSK, etc.) and the noise (e.g. Gaussian)
are known, while in general neither received signal power nor
noise power are known. :

Blind equalization means to find a filter

{c) = co, €1yeery CNe=1

for an unknown system (channel) (k) such that the overall
impulse response (s} = (c) o (k) = 1, where “o” denotes
discrete convolution. “Blind” means that only the output
(z) = (z) o (s) is observable, while the input sequence (z) is
unknown. Of course the knowledge of some statistical proper-
ties of (x) is necessary. More specifically we demand that (x)
be an ii.d. sequence with known kurtosis.

Hence the output random process is a weighted sum of a

number of i.i.d. input random processes {(x),:

(z) =Y sk(x)y (1)

k
The parallelism to the SNR estimation problem is obvious.

III. THE SuM oF RANDOM PROCESSES (VARIABLES)

AND THE KURTOSIS
We assume all input random processes to be complex val-

ued, stationary and zero-mean with existing characteristic
function and moments up to the fourth order. Moreover, the
channel input (x) must be iid..

The (k + £)-th order moment of a complex random process
{r} is defined by

me(k,£) = / / el fo(re, i)dredri. (2)

—00 — 00
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It can be shown that the (k + £)-th order moment of the
sum (y) = (r) + (n) can be expressed as

my(k, =33 (i) (5) mo(k = u, £ = )mn(u,9). (3)

u=0 v=0

We define the kurtosis of a random process (r) as he ratio
of the fourth order to the squared second order expected value

K, = E{rrr"r*}/ (E{rr*})>. (4)
Replacing expected values by moments gives:
K, — my(4,0) 4+ 2m.(2,2) + m.(0, 4). (5)

(m+(2,0) + m.(0,2))

Using (2), (3) and (5) we can express the kurtosis Ky of (y)
as:

Ky - Ko = i*(Kr — Kc) + (1 - £)*(Kn — Kg),  (6)

where &k = S/(S + N) is the wanted signal power to total re-
ceived power ratio and K is the kurtosis of a Gaussian pro-
cess. Eq. (6) is the motivation to define the Gauss unlikeness

G, = K, - Kg, cf. [1]

IV. SNR ESTIMATION
The algorithm to estimate the SNR is quite simple now. Gy
and G, are known from the used modulation scheme and the
expected noise type, resp. Then observe the received signal
(y) and compute an estimate for G, by averaging in the time
domain. Finally solve (6) for x and the estimated SNR is
SNR =«/(1-k).

V. BLIND EQUALIZATION
Extending (6), the Gauss unlikeness G at the output of
the equalizer is given by

G.=G.y st (Zs:). ™

|G:| is always less or equal to |Gz|, with equality if and only
if either (x) is Gaussian or (s) = 1. The former case cannot
be solved by any means, and the latter describes a perfectly
equalized channel. Hence it is sufficient to maximize |G|, e.g.
using a stochastic gradient algorithm (see [2]).
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Abstract — Given N strongly mixing observations
{X:,Y:}}L,, we estimate the regression function f*(z) =
E[Yi|X1 = z], z € R¢ from a class of neural networks,
using certain minimum complexity regression estima-
tion schemes. We establish a rate of convergence for
the integrated mean squared error between the pro-
posed regression estimator and f*.

I. INTRODUCTION

Let {X:, Y:}2_. be a stationary process such that X
takes values in ®? and Y; takes values in ®. Given N
observations {X;,Y;}/L,; drawn from {X;, Y:}2_., we are
interested in postulating an estimator based on single hid-
den layer sigmoidal networks for the regression function
f*=EMi|X; =z], z € R

Recently, assuming that the underlying random variables
{X:,Y:}& _o are ii.d., Barron [1] proposed a minimum com-
plexity regression estimator based on single hidden layer sig-
moidal networks. Moreover, supposing that Assumption 1 (see
below) holds he established a rate of convergence for the inte-
grated mean squared error between his estimator and f*. In
this paper, we extend Barron’s results from i.i.d. random vari-
ables to stationary strongly mixing [3] processes. The reader
is referred to the full paper [2] for complete analysis.

II. A CrLass oF TARGET REGRESSION FUNCTIONS
AND SINGLE HIDDEN LAYER SIGMOIDAL NETWORKS

ASSUMPTION 1. Assume that (a) Y; takes values in some
interval T = [a,a +b] C R a.s.; (b) X1 takes values in
B = [-1,1]% a.s.; and that (c) there exists a complez valued
function f on R? such that for = € B, we have

rE-ro= [

Rd

(e""" -1) f(w) dw

and that fw l|lw||1|f(w)] dw < C' < oo for some known
C' > 0. Set C = max{1,C'}.

Let ¢ : ® — R denote a sigmoidal function such that
|¢(x) = 1uso03l £ ¢'/|ul? for some p > 0, ¢' > 0, and for
all w € R\ {0}. Set ¢ = max{l,¢'}. For n > 1, let
Yo=n(d+2)+1. For0<i<n,let¢; ER;for 1 <i<im,let
a; € R¢ and let b; € R. We define a yn-dimensional parameter
vector (™) as

6™ = (a1,a2,...,an; b1,b2,...,bn; €o,€1,...,Cn).

Now, define a single hidden layer sigmoidal network

fotn) = R4 — R parametrized by 6(™) as

fe(»)(z)=00+zce #(ai -z + bi), r € R @)

i=1

1This work was supported by the Office of Naval Research under
Grant N00014-90-J-1175.
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2 1 1
Set toy = 2_27?_ q% n%fr— and define (™ C R as

n
(n) . . . ‘
(6 e €T, Jai] < 26, max Jlailly < wn, max bl < @)
=1
For each fixed n and N and given an e,y > 0, we construct
an en n-net of (™, namely, T~ such that

4wne

Incard(Tn,n) < 7nln = Ln,n,

n,

where card(Tn,~) denotes the cardinality of the set T, n.

II1. ESTIMATION SCHEME AND MAIN RESULT
Let a(j) denote the strong mixing coefficient [3] corre-
sponding to the process {Xi, Yi}2 _oo-
ASSUMPTION 2. Assume that the strong mizing coefficient
satisfies a(j) = aexp(~cj®),j > 1,a € (0,1],8 > 0,¢ > 0.

Write Iy = |_N|'{8N/c}1/(‘6+1)'|—1j. Iy plays the same role in
our analysis as the sample size N in the i.i.d. case. Define

N
- _ arg min _1_ - 2
gn,N = 6€Tn.n {N ;(Y; f9(Xl)) }a

where for a given 8 € Tn n, fo is defined as in (1). Now, for
each fixed regularization constant A > 0, define # = iy as

N
argmin ) 1 : . 2 Loy +2In(n+1)
{W— D00 = o, (K AZETS :

1<n<ly

and define the minimum complezity estimator as f5_ .

THEOREM 1. Suppose Assumptions 1 and 2 hold.  Let
A > 5b2/3 and for somer > 1/2 let (nIn)™" < enn < n~2,
then

* 2 ‘VlIlN
EAd[féﬁ_N(I)“ fH(z)]" dPx(z) =0 (W) )

where Px denotes the marginal distribution of X;.

Note that the exponent of N in (2) does not depend on
the dimension d. In [2], we compare the rate of convergence
obtained in Theorem 1 to the rate of convergence achieved by
the classical nonparametric kernel estimator in similar setting
and to the rate of convergence obtained by Barron [1] in the
i.i.d setting. In [2], we also establish a result analogous to
Theorem 1 for m-dependent observations.
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Abstract — This work describes an EM-based ap-
proach to multi-user detection that treats the signals
of interfering users as hidden data. We consider a new
algorithm based on the space-alternating generalized EM
(SAGE) algorithm appropriate for estimation of discrete
random parameters, and we use it to derive rapidly-
convergent nearly optimum multi-user receivers.

I. INTRODUCTION

The ezpectation-mazimization (EM) algorithm [1] provides an
iterative approach to parameter estimation when direct max-
imization of the likelihood function may be infeasible. The
recently proposed SAGE algorithm [2] modifies EM to update
only a subset of the parameter components at each iteration,
thereby allowing the use of less-informative hidden data in
order to improve convergence rates. We consider a new al-
gorithm based on the SAGE structure that incorporates the
statistics of the parameter components not currently being up-
dated. Our motivation is the problem of multi-user detection
[3], for which the vector parameter b corresponds to the bi-
nary data of several users in a CDMA system. The complexity
of optimum decisions for b (under either Bayesian or ML cri-
teria) is exponential in the number of users [3] and motivates
the development of simpler iterative receivers.

Modifying the SAGE algorithm to treat parameter compo-
nents not currently being updated as hidden data leads to a
new “hidden-parameter” EM (HPEM) algorithm. In terms of
the observation Y and vector parameter b with joint density
f(y,b), the ith iteration of the HPEM algorithm is described
by the following steps:

e Set k =1+ (émodK). Let by = {b; : j # k}.
Choose the hidden data x.

o E-step: Compute
Q(bi; bY) £ /log F(y,%,b;, | bx) h(x, bg; ¥, b*) dxdby (1)

e M-step: b}:"l = argrrtaxQ(bk;bi), b;:jl = bi.
*

In (1), the integrating density h is given by either the con-
ditional density f(x,bg | y,bx) or the product of conditional
densities ' .

f(x I yybt)Hm.#k f(bm I Yy, :'h) (2)

For the former case, we have
Q(bx; b*) = E {log £(y,%, by | be) | ¥, b = bi},

which is essentially a smoothed version of the SAGE E-step
objective function. This algorithm produces an estimate se-
quence that is non-decreasing in the marginal likelihoods

log f(y | bx = bjt) > log f(y | bx = bi) (3)
forall k=1,..., K, where f(y | b) = E{f(y,b | b))}

This research was supported by the U.S. Army Research Office un-
der Grant DAAH04-93-G-0219 and by an AT&T Ph.D. Fellowship.
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Intuitively, the latter case (2) involves conditioning the
statistics of each hidden parameter b, on current estimates
for all parameter components except bm, rather than just on
b = bi. Under mild conditional independence assumptions,
the algorithm with & given by (2) also produces an estimate
sequence satisfying (3).

I1. RECEIVERS FOR “HIDDEN INTERFERERS”

The received signal in the K-user synchronous CDMA
channel is described by Y ~ N(RAD, a'ZR), where R is
a positive-definite, symmetric matrix of signature waveform
cross-correlations, A is a diagonal matrix of the users’ sig-
nal amplitudes, and b € {£1}¥ is the users’ data over one
bit interval. The observation Y corresponds to the sampled
outputs of filters matched to the users’ signature waveforms.

In applying the HPEM algorithm to multi-user detection,
we assume b is distributed equiprobably on {£1}¥* and con-
sider the scenario when R, A, and o? are known. The re-
sulting receiver cyclically updates estimates for the K users’
bits. With respect to iterations that update by, the E-step
computes soft-decision estimates of the interference:

. . a .
b = E {bm | ¥, b = bin} = tanh(—3 (ym ~ > Rmja;b}))
jAm
for all m # k. The M-step cancels the estimated interference;
le. 7
’ 2 = Yk — Zm;ﬁk kaambm,

and updates the estimate for bx via bit' = sgn(zx). Alterna-
tively, one could model the parameter b as taking values in
the interval [—c,c]. In this case, the M-step update is

bi+1 - { zk/ak ¢ [—Ca C]

zr/ar € [~c,cl.

The HPEM receiver has a structure similar to multi-stage
receivers [4], but it enjoys some unique and significant conver-
gence and performance advantages due to the non-decreasing
likelihood of the estimate sequence b*. These are verified by
theory and simulation.

One might also consider application of the SAGE algorithm
to multi-user detection. Depending on the M-step update non-
linearity, the resulting receivers provide either an iterative im-
plementation of the decorrelating detector [3] or a convergent
multi-stage receiver using sequential, rather than simultane-
ous, updates of the bit estimates.

REFERENCES
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Abstract — The problem of recovering band-
limited signals from noisy data is considered.
Whittaker-Shannon cardinal expansions based
estimates involving sampling windows and
truncation of higher frequencies are introduced.
Weak and strong pointwise convergence properties
of the proposed estimates are derived.

I. Introduction

Consider the problem of recovering a function
f(t), when only the noisy measurements generated
by the following model are available
vk = f(kT) + &, k=0, £1, £2, ..., some T > 0,
and g represents noise.

The objective of this paper is to examine the

statistical properties of reconstruction schemes for
f(t) which is band-limited, i.e., which Fourier

transform has support within (-, €2), Q is a finite
number called the bandwidth of f. Such a function
can be represented by the so-called cardinal series
due originally to Whittaker and Shannon

=3 fko) sinc(% (t-k 1)), (1)
k=-0

uniformly in any bounded interval of R, provided
that T < /QQ, where sinc(x) = sinx/x.

II. Estimation Techniques

The representation in (1) forms a natural basis for
our estimation techniques. We construct a class
of recovering algorithms of the following form

fy(tt, &) =12, yiKs(t-jo), @

ljl<n

where Kj(t) =

_5&51;1@ y(EQL), 0<T<m/Q,
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8>0, v is a band-limited function with the

bandwidth equals 1 and y(0) =1. For § —0 the
estimate in (2) takes the form of the kernel

convolution estimate with the kernel sin(Qt)/nt.
This clearly represents a truncated and smoothed
version of the expansion in (1).

The pointwise properties of the proposed estimates
are established which includes the consistency and
convergence rate. In particular, it is shown that

for a certain choice of the parameters T, 6 and the
function y the mean squared difference between

?\y(t;’t, &) and (t) can tend to zero as fast as O( ll}-lll )

" uniformly in t and for any f in the band-limited

class.
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Abstract — Consistency and rates of convergence
of the k,-NN estimator are established in the gen-
eral case in which samples are chosen arbitrarily from
a compact metric space.

I. INTRODUCTION

Nearest neighbor (NN) estimation has received much atten-
tion since it was studied in [1]. Most existing work generally
considers the case in which the observations are drawn iid.
from a probability distribution. Some authors (e.g., [2, 4])
have discussed rates of convergence of kn-NN estimators. In
[3], we formulated a new estimation problem in which the ob-
servations need not be drawn randomly but can be arbitrarily
selected. We investigated convergence of the NN rule in this
framework and found its convergence rate. In this paper, we
consider the consistency of the k,-NN estimator under arbi-
trary sampling.

II. PROBLEM FORMULATION AND PRELIMINARIES
Let Y = R* (for some positive integer s) with inner-product
induced norm || - || and let X be a metric space with metric
p which we denote (X,p). Given a point z, € X, a random
variable ¥, is drawn with unknown conditional probability
distribution F(yn|zs). We are asked to produce an estimate,
§in, of the value of y» with the goal of minimizing ||y» — -
If F(yn|zs) is known, the estimate that gives the minimum
possible expected loss is the Bayes estimate, r*(zn). M 2zy is
chosen arbitrarily, the minimum worst possible expected loss
is the sup over z, of the conditional Bayes risk, R*".

We consider the problem in which the only knowl-
edge of F(y|z) is that inferred from pairs of samples
(z1,91), -+, (®n—1,%n—1). The kn-nearest neighbor rule is de-
fined as follows. Let k., be any nondecreasing sequence of num-
bers. Denote the k, nearest neighbors of z, as z,f ,...,zﬂ”‘]
where zE] is the nearest. We denote ygl as the parameter
associated with the ith nearest neighbor. The k.-NN rule
estimate is_the average of the kn NN parameters, ﬂslk“ =
ﬁ ::‘1 yEI]. Let riF= (zn, z[,f], ceny z!f"]) be the expected loss
using the k. nearest neighbors of z,. If the z:’s are cho-
sen arbitrarily, in general one cannot get a useful bound on
rg’")(z:n, zE], cees j,f"’). Instead we prove an upper bound on
the cumulative risk. We define C,(lk")(zl, ...,Zn) as the cumu-
lative kn-NN loss and Rg”‘)(zl, ...,Zn) s the time-averaged
risk of a given arbitrary sequence.

We impose the following Lipschitz assumption on F(y|z).
Let m(z) = E[y|z] and o*(z) = E[[ly*|=] - lm(2)|)?. Note
that r*(z) = o?(z).

Assumption 1 There ezists K,a > 0 such that for any
z1,22 € X,

lIm(21) — m(z2)|| < VEp(z1,22)"

1This work was supported in part by the National Science Foun-
dation under grants IRI-5209577 and IRI-9457645 and by the U.s.
Army Research Office under grant DAAL03-92-G-0320.
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lo*(21) — 0™ (22)| < Kp(z1,22)**

The metric covering number N (e, A) of a compact subset A
of (X,p) is defined as the smallest number of open balls of
radius € that cover A. The inverse function, N ~*(k, A), the
metric covering radius, is the smallest radius such that there
exists k balls of this radius that cover A.

ITI. MAIN RESULT
Theorem 1 With squared error loss, for any F(ylz) satisfy-
ing Assumption 1, and with any arbitrary sequence s, ..., ZTn
in compact subset A of (X,p), we have that any kn-nearest
neighbor rule satisfies

C&k“)(zl,...,zn) <

n—1

S (14 ) (@0 + 2K 312N ke, A

=2

If {k,.} satisfies (C1) kn — o0 and (C2) kn — 0 then (when
the limit exists) we have that

i=ky

n

. nlkn .1

Jim B ascvon) = Jim 20,720
i=2

lim sup Rg””)(zl, .oy Zn) = R™*

N0 gy ..., Tn

The first statement gives an upper bound on the cumulative
risk for an arbitrary sequence in terms of the sum of the con-
ditional Bayes risks plus the growth rate. The rate is indepen-
dent of the sequence but is in terms of an intrinsic topological
quantity of the compact set A. It quantifies how close ar-
bitrary points in a compact set cluster together. The final
statement states that the asymptotic time-average of the NN
risk equals the time-average of the conditional risks of the
particular sequence. Also, the asymptotic time-average of the
worst possible sequence equals the worst possible conditional
Bayes risk.

In particular, for compact subsets of R”, it is well-known
that N "'(n, 4) = O(n~'/"). This gives a convergence rate
of O(n_;'-ﬁ:) for the time-averaged risk. This rate coincides
with rates established [2] in the random sampling case.
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Abstract — In many situations it is desirable to operate on a
subset of the data only. These can arise in the areas of
experimental design, robust estimation of multivariate
location, and density estimation. This paper will describe a
method of subset selection that optimizes the determinant of
the Fisher Information Matrix (FIM) which is called the
Effective Independence Distribution (EID) method. Some
motivation will be provided that justifies the use of the EID,
and the problem of finding the subset of points to use in the
estimation of the Minimum Volume Ellipsoid (MVE) will be
examined as an application of interest.

I. PROBLEM STATEMENT

The determinant of the FIM as an objective function to optimize
arises in many areas of statistics and engineering. In most cases,
the problem is one of subset selection which can be stated as
follows: given a data set of size n, select a subset of these points of
size m, where m<n, such that the determinant of the FIM is
optimized. It is assumed that each data point is dimension p and
that n>>p. Subset selection should not be confused with
dimensionality reduction, where the goal is to reduce the value p.

Current methods of subset selection typically rely on random
methods {1]. The problem with these methods is that they are not
guaranteed to find the global optimum with respect to the objective
function in any finite sampling. Another undesirable aspect of
these is that the results are not reproducible because they are based
on randomly selected subsets.

11. EFFECTIVE INDEPENDENCE DISTRIBUTION
The EID was developed and used by Kammer [2] to choose
optimal sensor locations for a modal identification experiment on
the space station. The EID can be calculated as the diagonal
elements of the following matrix

EID = diag(X(XTX)'X7)

where X is an 7 x p data matrix with each row containing one data
point, and the FIM is given by

FM =X'X

It can be shown [3] that the following relationship holds between
the determinants of the FIM as points are removed from a data set

| XIx_|=a- EID, X" X|

where X_; is the data matrix with the i-th point removed and EID;

corresponds to the i-th data point. From this, it is apparent that the
required optimization of the determinant of the FIM can be
obtained by deleting observations with the appropriate EID value.
Further theory motivating the use of the EID method will be
provided in the poster session.

III. APPLICATION

The MVE estimator [1] is a robust estimator of location and
covariate structure. Determining the MVE consists of two parts:
1) finding the subset of points to be used in the estimate and 2)
finding the ellipse that covers this set. The EID method addresses
the first problem.

To test the usefulness of the EID method, it is applied to six
data sets where the true MVE is known. The paper by Hawkins
[4] gives the correct subset and the resulting volume of the true
MVE for these data sets. These are regression data, and the
predictors are used to determine the MVE. The size of the data
sets are relatively small, ranging from n=20 to n=50. The
dimensionality of the datais 2< p<35.

The EID algorithm is used to determine the set of points that
comprise the MVE estimate. It is implemented in MATLAB on a
486, 33MHz computer, and the time required to find the subset of
points ranges from 0.11 seconds to 0.77 seconds. The relative
error in the volumes of the minimum covering ellipsoid using the
EID approach are less than 6% for these data sets.

IV. SUMMARY

In this paper, the EID method of subset selection has been
described. Since this is a deterministic method, the results are
repeatable for a given data set which is a desirable property. This
method is relevant for a wide range of applications.
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Abstract

This paper examines the application of Akaike
Information Criterion (AIC) based pruning to the refine-
ment of nonparametric density estimates obtained via the
Adaptive Mixtures (AM) procedure of Priebe and Mar-
chette. The paper details a new technique that uses these
two methods in conjunction with one another to predict
the appropriate number of terms in the mixture model of
an unknown density. Results that detail the procedure’s
performance when applied to different distributional
classes will be presented. Results will be presented on arti-
ficially generated data, well known data sets, and some
recently collected features for mammographic screening.

I. APPROACH

Given X={x1, X3, ..., X,} where each x; is i.i.d.
according to an unknown density c(x) then one is often inter-
ested in estimating ou(x). This problem occurs in many areas.
There are a variety of approaches to the multivariate density
estimation problem [1].

An often used parametric approach is that of finite
mixture models [2] in combination with the expectation max-
imization (EM) method of Dempster, Laird, and Rubin [3].
Given an unknown distribution o(x) we seck to model the
distribution using o*(x) defined by

m
o*(x;¥) = 2 1K (x;T) D
i=1

where K is some fixed density parameterized by I', and ¥ =
(3, T, 72, Tp, ey o, Ti). The ;s are referred to as the mix-
ing proportions. (We can assume for much of what follows
that K is taken to be the univariate normal distribution, in
which case T'; becomes {1;, 6;}.) One difficulty with the finite
mixtures approach is that one needs some idea as to the
appropriate number of terms in the mixture model.

A recently developed density estimation technique
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that circumvents some of the problems of the above technique
is the adaptive mixtures density estimation (AMDE) proce-
dure of Priebe [4]. This procedure is a blend of the finite mix-
tures and kernel estimator approach. It is essentially a
mixtures type approaches that allows for the creation of new
terms as indicated by the data complexity. It is important to
note that unlike finite mixture models the number of terms m
is not fixed but is estimated from the data. A problem with the
adaptive mixtures procedure is that the solutions that it pro-
duces are typically overdetermined. While being good func-
tional estimate of o(x) they have too many terms in the
mixture.

Using the Akaike Information Criterion (AIC) [5] as
a starting point we have developed a procedure that uses a
single or set of adaptive mixtures density estimates and pro-
duces a set of pruned models with a lower complexity. This
procedure attempts to obtain a minimum complexity model
by iteratively pruning terms from the original model. The
keys to this approach are AIC based pruning of AMDE mod-
els based on resampled data sets.

II. RESULTS

Results obtained using this procedure were pre-
sented at the poster session.
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I. INTRODUCTION

Ziv-Zakai bounds [1)-[4] on the mean-square-error (MSE)
in parameter estimation are some of the tightest available
bounds. These bounds relate the MSE in the estimation prob-
lem to the probability of error in a binary hypothesis test-
ing problem. The original Bayesian version derived by Ziv
and Zakai (1], and improvements by Chazan-Zakai-Ziv [2] and
Bellini-Tartara [3] are applicable to scalar random variables
with uniform prior distributions. This bound was recently ex-
tended by Bell-Ephraim-Steinberg-Van Trees [4] to vectors of
random variables with arbitrary prior distributions. The goal
of this paper is to present an improvement to the vector ver-
sion of [4], explore some properties of the bounds, and present
further generalizations.

II. IMPROVED VECTOR BOUND
Assume that a vector of random variables § with prior proba-
bility density function p(0) is estimated from the observation
vector x. The estimation error is defined as ¢ = § — § and we
can lower bound aTE {ccT} a, where a is an arbitrary vector,
by either of the two bounds:

() a"E{eT}a> /ow%.

V{/(p(s0)+p(sa+6)) Pmsn(%v+5)dv}dA

1)

(i) a"E{eeT}a> /Ow%. )
4 {/ 2min (p(), p(¢ + 6)) Prsnle, ¢ + 6)d¢} dA
where the vector § satisfies
aTs =4, 3)

Prin(, ¢+86) is the minimum probability of error in the binary
detection problem:

L b=y =)
fHoi b=y Pr(llo) = 2(¢) + p(p +6)
Hi: 6=¢p+6 Pr(H)=1- Pr(Ho), (4)

Pe(e, 0+ 6) is the minimum probability of error in the same
binary detection problem but with equally likely hypotheses,
and V{-} is a valley-filling function. Since probability of error
results are easier to derive and more plentiful for the equally
likely problem, the second bound may be more useful compu-
tationally. .

In applying the bounds, one has to choose a and 8. The
choice for a is dictated by the particular parameter or linear
combination of parameters being investigated. If a bound on
the MSE of the i** parameter is desired, then a must be the
unit vector with a one in the i*® position.

The vector § determines the position of the second hypothe-
sis § = p+ 6. It is constrained to lie in the hyperplane defined
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by (3). Generally, § should be chosen so that the two hy-
potheses are as indistinguishable as possible by the optimum
detector. In [4], § was chosen to be

A

Tl * ©)
This choice results in the hypotheses being separated by the
smallest Euclidean distance. When a is chosen to produce a
bound on the MSE of the it* parameter, the resulting bound is
equivalent to that obtained by conditioning the scalar bound
[4] on the remaining i—1 parameters, and taking the expected
value with respect to those parameters. Choosing § according
to (5) does not always lead to the tightest bound because hy-
potheses separated by the smallest Euclidean distance are not
necessarily the most indistinguishable. A higher Ppin(p, ¢+96)
can be achieved by choosing

A
§=——a+b (6)
llall?
‘where b is not a function of v, and is orthogonal to a, thus
(3) is satisfied. With this choice, the bound on the MSE of
the i** parameter cannot be reduced to the expected value of

the conditional scalar bound.

6=

III. FURTHER EXTENSIONS
Other results concerning the Ziv-Zakai bound are as follows.

First, a tighter bound which uses the probability of error in
an M-ary hypothesis testing problem is derived.

Second, both the binary and M -ary bounds are equal to the
minimum MSE when the posterior density of a%¢ given the
observations, p(aTﬂlx), is symmetric and unimodal. Further-
more, in the limit of no data, the bound converges to the true
a priori variance when the prior density of a%4 is symmetric
and unimodal.

Third, for problems in which some of the parameters may
be considered random variables with prior probability density
functions, but some are considered unknown, deterministic
quantities, the bound can be extended to a hybrid version
combining the derivation leading to (1) and (2) with a deriva-
tion similar to that in [1] for non-random parameters.

Fourth, the bound can be extended to any non-decreasing
cost function of |a”¢| in a straightforward manner.
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Source Coding with a Reversible Memory-Binding
Probability Density Transformation

Bryan G. Talbot* and Lisa M. Talbot?

* The Analytic Sciences Corp., Reston, VA

Abstract — We present a memory-binding density
transformation as a means of improving performance
of entropy coders acting on memoried sources.

I. INTRODUCTION

Reversible coders are often called upon to operate on sources
with memory. Though Shannon’s work suggests that coding
performance may be enhanced by encapsulating memory in-
formation in an M-dimensional pdf, in many situations this
approach is impractical. Thus, coders are often forced to view
the source as memoryless and attempt to encode near the
entropy of a high-entropy single-symbol pdf, rather than the
desired lower-entropy multi-symbol memoried pdf. We pro-
pose a reversible memory-binding transform (MBT) alterna-
tive which improves performance by binding memory informa-
tion from the multi-symbol pdf into the single-symbol pdf to
be processed by the coder.

1I. DENSITY TRANSFORMATION ALGORITHM
€ A, where A =

Memory in-

Assume a source sequence {z:}, =i
{a1,...,an} is an alphabet of N symbols.
formation associated with x; is represented by the vector
X = {zi=My-- - Ti1 }. For each z; there exists a mapping @i,
a permutation of A that produces B; = ¢4 = {B1,--- BN}
This permutation is a function of X; that encapsulates mem-
ory of the M symbols previous to z; and may be represented
by either a rule or list. In either case, ¢; has the property that
the a priori probability, P(zi = B | Xi), is maximum and
Plzi=Ba | X)) 2 P(z; = Bn11 | X;) for n = 1,...,N -1
The density transform is defined as f : x; — yi where
zi, ¥y € A, so that yi = flzi) = Ef:; and(z; — Bn). The in-
verse transform is given by z; = fYy) = E:]:l Bré(yi—an).
The probability density functions associated with z; and y; are
given by p(z) and p(y) respectively.

III. TRANSFORMATION CHARACTERISTICS
Viewed in one sense, an MBT is a generalization of both dif-
ferential and modulo-PCM coding. In another sense, it is
conceptually an alternative pro jection mechanism for produc-
ing a low-entropy low-dimensionality pdf from a low-entropy
high-dimensionality pdf with memory. In a third sense, from
an encoder perspective, it may also be viewed as a transfor-
mation from p(z) to p(y) which binds memory information to
the symbols forming the domain y. From any perspective, an
MBT, appropriately inserted between a source and coder, is a
mechanism for increasing coder performance by reducing the
entropy of the source pdf. For many sources of interest, such
as imagery, E{p(y)} < E{p(z)} where E{e} is the entropy
function.

The fact that the MBT effectively reduces the entropy of
a memoried source separately from the choice of encoder is
significant from a theoretical perspective because it separates
the coding process into distinct entropy reduction and coding
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stages rather than combining both operations into one step.
Thus, the encoding process as a whole becomes more general
and source-independent. The MBT also has the characteris-
tics of transforming source densities of interest, which may be
compound multi-modal distributions, into simple structured
densities with a predictable parametric shape similar to the
gamma distribution. This is useful from both an informa-
tion theoretic and statistical perspective because it provides
an effective interface between real world data sources and in-
formation theoretic models based on parametric distributions.
In this case, coding models based on statistically determined
gamma-type distributions may be directly exported to a va-
riety of real-world sources via an MBT. The transform intro-
duced here is similar to modulo coding schemes of [1] in that
it does not increase the size of source alphabet supplied to the
encoder. This contrasts with differential coding which can
potentially increase the alphabet size by a factor of two.

IV. EXPERIMENTAL RESULTS

The MBT is applicable to both traditional and non-
traditional sources. Figure 1 demonstrates the application of
the MBT to the ubiquitous Lena image for M = 1. Tests with
MBT-AH (Adaptive Huffman) and MBT-LZW (Lempel-Ziv-
Welch) coder pairs showed significant performance gains over
those by either AH or LZW alone. We have also applied an
MBT-AH coding pair to the indices output by a vector quan-
tizer in conjunction with memory knowledge provided by the
codebook. We have found that MBT-AH boosted VQ com-
pression performance by a factor of nearly 1.5 in comparison
to the factor of 1.1 for AH alone.

(a) (b)

Fig. 1: Reversible Transformation of Lena Image pdf: (a) p(z),
entropy = 7.44bpp (b) p(y), entropy = 5.06bpp

V. CONCLUSIONS
We have presented a reversible memory-binding transform al-
gorithm. The transform, inserted as a separate stage between
the source and coder, serves to increase performance sepa-
rately from choice of encoder. This transform shows much
promise for use in the fields of information theory, coding,
and statistics.
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Projection Pursuit Autoregression and Projection Pursuit Moving Avergge
Zheng Tian
Applied Math. Dept. , Northwestern Polytechnical Univ. ,
710072 Xi' an Shaanxi, China

'Abstract — Projection pursuit autoregression and projection

pursuit moving average with multivariate polynomials as
ridge functions in both cases are proposed in this paper (To
write the methods in simplifed forms MPPAR and MPPMA,
respectively ). The L.-convergence of such the methods is
proved. This paper also proposes two new algorithms for
MPPAR and MPPMA. By using the methods, we establish
the mathematical models about the Wolfer sunspot data and
Canadian lynx data.

I . INTRODUCTION

The results presented here were motivated by the research
concerning both non-linear non-parametric time series anal-
ysis and projection pursuit regression.

I . PROJECTION PURSUIT AUTOREGRESSION
AND Its L, -CONVERGENCE

The process z;,¢ =0, = 1, + 2, +- is said to be a non-linear
autoregression of order ¥ (NLAR ( k )) process if  is sta-
tionary and there exists a function f ; R*~>R such that z, =
F(@—1y2*52-2) + 2.t € Z,where z ~WN (0,0%) .

The form of projection pursuit autoregression model can be
expressed as :

T = Zgl( a}l‘x)_*_ Zi9l E z,
j=1

where o] x denotes a one-dimensional projection of the vec-
tor 7 = (@1, ,2%1), a; is projective direction, af
= (aj,»***»a;,) and is called as ridge function and z ~WN
(0,0%).

For the L, -convergence of MPPAR we have the follow-
ing Theorem .
Theorem. Let z, be a non-linear autoregressive time series

NLAR(% ), and Jf’(z)dP < oo , then there exist a; and
¢;(u) such that as m — oo,

J[f(z) — 20 x) PLe(z)aP—~0,
J=1
where ¢;(z) is a polynomial, § = {(21,*,3:); — 1 < 7y
<oy, —a<n<a), wherecj, j= 1, ,k , are large
enough positive numbers.

Il . PROJECTION PURSUIT MOVING AVERAGE
AND IT1s L, ~-CONVERGENCE

Let 2,,¢ € Z be a non-linear moving average of order { (NL-
MA(!)) process, x (= h(z~1y***y2—1) + z,¢t € Z,where
z~WN(0,0%), the function 2 ; R'—R. It is obvious that
MPPMA has the L,-convergence as following corollary
shows

Corollary. Let x; be a non-linear moving average time series

NLMA(!), and th (2)dP < oo , then there exist a; and

¢;(u) such that asm — oo ,
J[h(z) — D0 af2) PL(z) P~ 0 ,
=1

where g;(«) is a polynomial and 8§ = {(z),+*,2,); — 1 <K
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2 Koy —aK s a) swherec;, j = 1,1 jare large
enough positive numbers. 27=(z—1,*** »Z1—-1)"

NV THE ALGORITHMS OF MPPAR AND MEppa

We propose the following MPPAR algorithm

step 1. First analysing the data and drawing he scatter-
plot, we use the Durbin-Levinson method and A{¢ ¢ritetion
to identify the order k of the fitted model and wgtimate the
variance of white noise.

step 2. We select the suitable m and the powe}_pumber of
polynomials g;(. },j = 1,**,m then minimizing pe objec-
tive function

N E 3
v(a,g) = E[Is - Zgi( ajx )],
=] J=1
where 7 = (2i—;,*,2;-1) ,2;and x are ObSCr“ations, z; is
R valued and x is R* valued i = 1,+-,N. We v.g establish

the preliminary model, zf¥) = Eg,( agx)+ .,
=1

§

step 3. Examining the residuals, we find out whether the
residuals have the appearance of a realizatiay of white
noise.

step 4. Repeat step 2 and 3, until the residualg can be the
appearance of a realization of white noise.
The algorithm of MPPMA is similar to the algotiyhm of MP-
PAR, except for the step 1.

V. THE APPLICATIONS

By using the new methods, we establish the mijels for the
wolfer sunspot data and Canadian lynx data, Tespectively.
The mathematical model of the Wolfer sunspot lata (1700-
1970)

z,=—10. 01431 4 0. 29984 aTx+0. 005550, 00602
(afx)?+ z ,where 7 = (z—1,21-2) » of = (0, ggge9, —
0. 45851), of = (— 0. 65241,0. 75786). z~. wN(0, 0.
009).

The results show that the residuals of the model ¢ jesg than
5%.

The mathematical model for Canadian Iynx dyg, (1821-
1934).

z, =-— 0. 02586 — 0. 0415 afx—0. 57932a7a ¢, 02586
(afx)?, where xT = (z—),2—2) , of = (0. 87228, — 0.
48901), of = (0. 09684, — 0. 99530). z ~ WN (0, 0.
023).

The results show that the residuals of the model are less than
2.5%.
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ROOT-N CONSISTENT ESTIMATORS OF ENTROPY FOR DENSITIES WITH
UNBOUNDED SUPPORT—

A.B. Tsybakov

LSTA, Université Pierre et Marie Curie, Paris - France

E.C. van der Meulen

Department of Mathematics, Katholieke Universiteit Leuven, Leuven - Belgium

Abstract - We consider a truncated version of
the entropy estimator proposed in [1] and prove
the mean square \/n-consistency of this estima-
tor for a class of densities with unbounded sup-
port, including the Gaussian density.

SUMMARY

Let Xi,...,X, be a sample of i.i.d. random variables
with common density f(z),z € IR. We consider the
problem of estimating the unknown entropy

- / £(z)In f(z)dz.

This problem has various applications in hypothesis
testing and information theory. There exist two main
approaches to the construction of entropy estimators.
The first approach consists of substitution of f(z) in
H(f) by a suitable nonparametric density estimator.
The second approach is based on spacings. Let X, 1 <
Xn2 < ...< Xnn be the order statistics of Xy, ..., X,.
The estimator

.SII-—'

n—-m n
Z ln(E(Xn,i+m - Xn,i))a

where m is a positive integer less than n, was introduced
in [2]. Its asymptotic properties as n — oo have been
studied by several authors under various assumptions
on f. Here we study an entropy estimator which is
somewhat different from fIm,n and is defined by

1 n
Hy = = 3" In{2p9(n — 1)}
t=1

where pPi = min{an,min#i IX, - le}, a, — 0is a
sequence of positive numbers, v = exp{Cg}, and Cg
is Euler’s constant. H, is a truncated and modified
version of the estimate introduced in [1]. In Theorem
1 we prove that the bias of Hy is of order 0(71—;), n—
00. In Theorem 2 we show that the variance of H, is
of order O(1). Our results hold for densities f with
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unbounded support and exponentially decreasing tails,
such as the Gaussian density.
Consider the following assumptions :

(4o) [ f(@)|Inf(z)ldz < co.

(A1)  f is twice continuously differentiable and
strictly positive on IR.

(A4) [ f(z)exp(=bf(2))dz < Cb~"
where C is a finite positive constant.

Theorem 1. Assume (Ap) — (Az). Then, as n — oo,

B(H,) - H(f) = O(%»

Next consider the conditions :

(B1) f.is Lipschitz continuous and strictly posttive
on IR.

(B2) There exists a > 0 such that for j =1,2,3

[ 7(z)

z SUP|; —z|<a (z
JEC! S

Theorem 2. Assume (Ag), (B1),(B3). Then, asn — oo,

Sup|z —z|<a ( ))Jd < 00

Y In? f(z)dz < 0.

E(H, — E(H,))* = 0(>).

Corollary. Assume (Ag) — (Az), B2. Then H, is v/n-
consistent in the mean square, i.e., as n — 00

E(y/a(Hn — H(H)))? = O(1).
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On the Theory and Application of Universal Classification
to Signal Detection

N. Warke and G. C. Orsak

Dept. of Electrical and Comp. Engineering
George Mason University
Fairfax, VA 22030-4444

E-mail: warkenc@bass.gmu.edu

Abstract—
sal Classification to the problem of classifying one of
M deterministic signals in the presence of dependent
non-Gaussian noise.

Definition of Problem: The M-ary Signal Classifica-
tion problem considered is defined as follows:

H; X™ ~ Noise+ S(0;) 1=1,2..M

where the test vector X" is of length n. The M + 1!
hypothesis corresponds to the case in which X" arises
from none of the above M hypothesis. In addition, we
shall assume that the noise arises from an unknown K"
order Markov source and that hypothesis H; corresponds
to “no signal present,” that is S(#;) = 0 for all n.

In this work we develop a classification scheme which
is independent of the true statistical model of the environ-
ment and still achieves many of the desirable properties
of the globally optimal detector.

Herein we apply methods of Univer-

Proposed Classifier: In the absence of a statistical
model for the noise, we will assume the existence of a
length N training vector t" from the noise source. We
propose the following classifier based on the work of Ziv
and Gutman in [1,2]:

he(X™ 67,60, 8) = drL(Px" 8.,

N

Fxr s, + 7 (Fen Fxr_s ) 4),)

- ,i=12,.,.M

where (.), denotes the quantization of the continuous al-

. . Pxn

phabet source, dKL(PX;L,Pqu) def ZPx; log{P—;‘fl-}, is
the Kullback -Leibler distance between the typeqs PX;
and qum of the quantized data and A is a positive con-
stant chosen to satisfy some design criterion. The de-
cision regions {Aj,As,...,Apr} corresponding to the M
hypotheses H,, Ho, ..., Hys are defined as follows: The re-
gion A; is defined as the set of all sequences (X" tV)
for which hg(X™,t",60;,A) > 0 for all i = 2,3...M. The
region A; for j = 2,3...M is defined as the set of all se-
quences (X", t") for which hy(X™,t",6;,A) > 0 for all

79

E-mail: gorsak@tejas.gmu.edu

i=1,2..M,i # j and hy(X",t",0;,)) < 0 and the re-
jection region Ag = (U2, As)°.

Summary of Theoretical Results:

1) The asymptotic probability of error under each hy-
pothesis decays exponentially fast at a rate A as the
length of the test vector X™ grows without bound,

1
im — )< =Ai=1,..
nlgréo nlogPA(e/Hz) <-\i=1,.M

regardless of the length of the training vector.

2) The asymptotic probability of detection under each
hypothesis tends to 1 as the length of the test vector
grows without bound provided that lim,_,c % >
Oand 0 < A < A,

li)m PA(A,/H,) = 1,2 = 1, M

for an appropriately chosen constant A,.

3) The probability of rejection under each hypothesis
for iid noise sources falls off exponentially fast as
the length of the test vector grows without bound
subject to the above constraints on n, N and A,

1
ll)m ,’TL‘lOgPA(AR/Hj) < —/\j,j = ].,2,...M

where A; > 0,7 =1,2,..M.
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A Matrix Form of the Brunn-Minkowski Inequality and Geometric
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Abstract — A matrix form of the Brunn-Minkowski
Inequality is derived, which may be applied in calcu-
lating the uncoded bit rate of lattice quantization and
modulation schemes.

I. INTRODUCTION

In many practical coding schemes, the bit allocation to the
symbols, at least in the intermediate phases of the coding
process, is done according to geometric consideration rather
than to probabilistic ones. For instance, the number of ef-
fective code words of a lattice quantizer is determined by the
shape and the volume of its granular region, and by the shape
and the volume of its Voronoi cell. Similarly, the size of a
lattice type constellation of a coded modulation system is de-
termined by the shape and the volume of the symbols’ decision
cells, and the shape and the volume of the space of allowable
signals (the latter is determined, e.g., by peak power, peak
spectrum or peak amplitude constraints).

Hence, the bit rate at the quantizer output, or in the mod-
ulator input, is generally higher than the overall coding rate
of the system, and it may estimated by the geometric rate

u(Ax +-AN)1/d>
p(An)? ’

where d is the dimension of the space (of source or channel
signals), Ax is the region of input signals, Ax is the basic
cell (of the quantizer or the constellation), u(A) = fz €A dx
is the (d-dimensional) volume of the region A , and Ax +
Av = {z+y : z€ Ax,y € An} is the Minkowski sum of
Ax and Ay. This sum may be interpreted as the geometric
convolution of the two regions.

As in the problem of estimating the information rate in
an additive noise channel, the geometric rate R¢ is also not
calculated easily, but it may be estimated by means of lower
and upper bounds. For example, the volume of the Minkowski
sum in (1) may be lower bounded via the Brunn-Minkowski
Inegquality (BMI), [1],

p(Ax + AN > p(Ax) + u(An)YE . ()

Equality in (2) holds if the two regions are convex and pro-
portional, e.g., if they are balls or cubes (with parallel edges).
For d = 1, this condition is reduced to the simple case where
Ax and Aw are intervals (and not, e.g., a union of intervals).

The BMI is dual in some sense to the Entropy-Power In-
equality (EPI), which lower bounds the entropy-power of the
sum of independent random variables. In [2], a matrix form
for the EPI was derived, leading to tight lower bounds on the
capacity of an additive noise channel with memory or with
intersymbol interference. In parallel to that, we derive in this
work a matrix form for the BMI, which enables to give a
tight estimate for R in cases where linear transformations
are incorporated with coding (“shaping”), or when spectral
constraints upon the signals are given.

Rg ~ log ( (1)
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II. LINEAR TRANSFORMATION OF SHAPES
We first introduce the matrix form of the Minkowski sum. Let
At = (A1...A,) be a (row) vector, whose n components are
d-dimensional shapes. We define a linear transformation of

.Al----An as
TA={Tz : (3)

where T is an m X n matrix. In particular, t.A means scaling
the coordinates of A by the scalar t. Note that TA is an
md-dimensional shape. Denote the volumes of the shapes by
p(Ai) = pi,i = 1...n. Following simple laws of integration,
the md-dimensional volume of T' 4, in the particular case m =
n, is w(TA) = |T|* - u(A) = |T|* - TI}_, p , where | - | denotes
the absolute value of the determinant. For the general case,
we suggest the following matrix generalization of the BMI:

Theorem 1 (Matrix-BMI): Let z = (A1...4.) be a
vector of d-dimensional cubes whose edges parallel the azes,
and whose volumes are the same as of A1 ... An, t.e., p(Ai) =
ui,i=1...n. Then

z; €A fori=1...n},

e &)
w2 (TE) " = Y IT @
i=l

where T =T+ L, L is an n x n diagonal matriz whose diago-

nal elements are pi/d.. .p}/d (the edges’ lengths of the cubes

.ZL....Z,,), and {f’,,z =1... (7’:‘)} is the set of all possible

m X m sub-matrices of f, obtained by choosing m out of the
n columns of T'.

For m = 1, (4) reduces to p(> i ti.Ai)l/d >
Sn, Itilul’?, ie., to the regular BMI (2). Equality in (4)
holds in each one (or in a mixture) of the following cases: if
A ... A, are cubes whose faces parallel each other; if (after
removing the all zero columns of 7', if any) m = n; or if T
does not have a full row rank, where then pu(TA) = 0. The-

. orem 1 is proved via a double induction over the dimensions

of T, using a conditional form of the BMI, analogously to the
proof of the matrix-EPI in [2].
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Constructing Wavelets from Desired Signal Functions
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Abstract — A limitation to wavelet design is the in-
ability to construct orthonormal wavelets that match
or are “tuned” to a desired signal. This paper de-
velops a technique for constructing an orthonormal
wavelet that is optimized in the least squares sense,
and whose associated scaling function generates an
orthonormal multiresolution analysis (OMRA).

I. INTRODUCTION

Most applications of orthonormal multiresolution analyses
(OMRA) use either Daubechies’, Meyer’s, or Lemarie’s
wavelets [1, 2, 3]. However, it would be best if the wavelet
matched the signal of interest. This paper presents a tech-
nique for generating an OMRA with a wavelet that is matched
in the least squares sense to a signal of interest by first devel-
oping a method for constructing the scaling function from the
wavelet and second, giving the conditions on the wavelet that
guarantee an OMRA.

II. MULTIRESOLUTION DECOMPOSITION

Mallat [1] showed that the discrete wavelet transform can be
used to generate an orthonormal multiresolution decomposi-
tion of a discrete signal consisting of a series of detail functions
and a residual low resolution approximation of the original
signal. The decomposition is done by convolving the original
sequence with a pair of quadrature mirror filters, h (low pass)
and g (high pass). In order to perfectly reconstruct the orig-
inal signal from the detail functions and the residual approx-
imation, the following must be true of the Fourier spectrum
magnitudes of h and g.

[HW)I* +|Gw)* =1 (1)

Cancellation of any aliasing is guaranteed by setting
gk = (—=1)*hi_¢.  The filters, h and g, are related to
the mother wavelet, ¥(z), and the scaling function, ¢(z),
by their 2-scale relations [2], ¥(z) =23, gré(2z — k) and
#(z) =23, hed(2z — k), or in the frequency domain by

) =CEHRG) ) =HREG) @

III. CONSTRUCTING & FROM ¥

A recursive equation for finding $(w) from ¥(w) can be found
by taking the magnitude squared of the equations in (2),
adding them and substituting equation (1) giving

[2@)I” = [8(2w)|* + | ¥ (2w)* @)

Substituting w = 7k, then w = 7k/2 and so on, leads to the
following closed form solution.

P -G e @
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and as in Mallat[1], ®(0) = 1. So, given any known wavelet,
its corresponding scaling function can be found directly from
equation (4).

IV. GUARANTEEING ORTHONORMALITY

Given that gr = (—1)*h;_ and ®(0) = 1, the multiresolution
generated by ¢(x) and related to 1¥(x) is orthonormal[l, 2]
if <¢(z),¢(x—k)>=46(k), or in the frequency domain,

oo |®w+2rm)|? =1.  Applying this condition to
equation (4) and letting Aw = 7 /2¢ gives the following condi-
tion on ¥(w) that will guarantee an orthonormal multiresolu-
tion analysis.

oo 4
27k 2
3 Zl\p (2"“ (%me))l =1 5
m=-00 n=0

Any wavelet that satisfies condition (5) can be used in equa-
tion (4) to generate an orthonormal scaling function that, in
turn, generates an orthonormal multiresolution analysis.

V. FINDING MATCHED WAVELETS

Assume in equation (5) that ¥(w) is bandlimited to 7 - K <
w| < m- Ky. Then for each value of £ = 0,1,..., N where
Aw = 7/2" is the sample spacing chosen for ®(kAw), a set
of M equality constraints on ¥(kAw) can be derived with the

following form
M
km
2o [¥ (%)
i=1

where o = {0,1}. Given W {kAw) as the desired signal spec-
trum, the equality constraints in (6) along with the inequality
constraints, 0 < |¥(kw/2V)|*> < 1 can be solved using non-
linear programming techniques where the objective function
f =Y (IW(kAw)|—|¥(kAw)|)? is minimized. The result is a
wavelet spectrum that satisfies the conditions for orthonormal-
ity and is matched to the desired spectrum, W{kAw). Since
the resultant wavelet spectrum is magnitude only, the wavelet
is symmetrical.

2
—1=0 (6)
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Abstract — This paper proposes a new coding strat-
egy by which desired quality of reproduced signal can
be guaranteed in the minimum cost of coding rate.

I. INTRODUCTION

In [1], we introduced discrete orthonormal wavelet transform
(DOWT) into the ECG data compression and obtained the
results of compression ratios (CR) from 13.5 : 1 to 22.9 : 1
with the corresponding percent rms difference (PRD) between
5.5% and 13.3%. Although we have achieved a dramatic im-
provement on compression performance over traditional ECG
compression schemes, both in our previously proposed ECG
coding system and in other lossy compression schemes, there
exists an unresolved problem that the desired quality of the re-
produced signals is hardly guaranteed in the minimum cost of
coding rates. For ECG compression, such a problem becomes
extremely crucial because if the quality of the reproduced sig-
nals can not be guaranteed the compression will be useless.
The current solution to this problem is to sacrifice the coding
rates in order to maintain the quality of reconstructed signals.
Obviously, this is not an efficient manner. In this paper, we
propose a DOWT-based compression scheme by which desired
PRD between the original ECG signal and the reproduced sig-
nal can be guaranteed in the minimum cost of coding rate.

II. CODING STRATEGY

The DOWT-based ECG coding system is a hierarchical struc-
ture composed of three parts, the DOWT unit, the quantizing
unit and the entropy coding unit. By a J-layered such a cod-
ing system, an input discrete signal ao is progressively decom-
posed into a set of sub-signals {as,(d;)1<j<s}, where as is
the lowest frequency sub-signal and {(d;)1<j<s} are the dif-
ferential details at different frequencies. These sub-signals are
quantized, entropy-encoded and transmitted to the receiver.
At receiving side, the quantized sub-signals, {a}, (d})i1<j<s}
are used to reconstruct the original signal. Let €7, €5 denote
the quantization MSE’s of d; and aj, respectively, according
to [2], the reconstruction MSE between ao and its reproduc-
tion is given by

J
’7=€J+Z€f- €Y
i=1

Based on Eq. (1), the problem of guaranteeing a desired re-
construction MSE 7o in the minimum cost of coding rate can
be formulated as

J
- o G 1.4
minimize h(y) = 57}” + E -27hj (2)
=1
subject to v = 7, (3)

where, h(vo) is the output, hy and hf are the entropies of a,
d; after quantization, respectively. And ~ is the reconstruc-
tion MSE between ao and its reproduction given by Eq. (1).
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The following optimum solution can be obtained by using La-
grange multiplier

and ey = 5770. 4
Therefore, as soon as the quantization MSE’s determined by
Eq. (4) are achieved, the desired reconstruction MSE 7o (or
the corresponding PRD) can be obtained.

How to achieve the desired quantization MSE’s determined
by Eq. (4) is another key point to realize our coding strat-
egy. In what follows, we propose an adaptive quantizer
by which the desired quantization MSE is really achievable.
For a uniform quantizer, the quantization MSE is given by
e: = K (A:)?, where K is a constant factor, A; is the quan-
tization step-size. It is easy to see that, by adjusting the
step-size A;, the desired quantization MSE can be achieved.
More details, for an expected quantization MSE, say, €0, we
can randomly choose an initial step-size Ao to do the quanti-
zation, then an actual quantization MSE g is obtained. We
compare it with the expected eo, if a given precision is not
satisfied, replace Ao with /e0/00 Ao and repeat the process
until a satisfactory precision is reached. Experiments have
shown that the convergence usually finished within about 3
iterations.

1
5? = ?j"yoi

III. EXPERIMENTS
We have tested our proposed coding scheme at different de-
sired PRD’s. The ECG data is taken from the MIT-BIH Ar-
rhythmia Database Record 200. The experimental results are
shown in Table 1. The reconstructed ECG were evaluated by
cardiologists and it seems clinically acceptable even at the CR
as high as 22.7: 1.

IV. CONCLUSION
In this paper, we proposed a new coding strategy by which
desired quality (PRD) of reproduced signal can be guaranteed
in the minimum cost of coding rate. The idea was successfully
introduced to the DOWT-based coding system for the ECG
compression application.
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Desired PRD(%) 7 9 13
Actual PRD(%) | 6.7 8.9 13.2
CR 12.4:1 | 16.0:1 | 22.7:1

Table 1: Summary of the compression performance
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Abstract -- An adaptive Markov model with three states
for mobile communication channel is studied and
simulated. The error sequence describing the long burst
error characteristics of the model channel is generated on
a computer based on the model. A test method using
threshold technique is given fo verify the accuracy of the
adaptive channel model.

I. INTRODUCTION

Modelling mobile communication channel is a prerequisite
to improve the channel error performance by error-error-
control technique. Set up a not only universal but also
accurate statistic model for mobile communication channel
is of great practical interest. In this paper, we apply Markov
model with three states to setting up an adaptive statistic
model for mobile communication channel based on a number
of field test curve. The model parameters, i.e., the elements
of the channel transition probability matrix P, are expressed
as the functions of the average carrier-to-noise ratio (C/N).
This is because among the factors which dominated the burst

error characteristics of mobile channel, C/N plays an

important role. We accomplish following work:
II. SETTING UP THE ADAPTIVE CHANNEL MODEL

First, we use a simple partitioned Markov model with three
states as the probability statistic model to be set up
describing the long burst error characteristics in mobile
communication channel. The parameters of the state
transition probability matrix P={p,}(1,)=1,2,3) of the model
and the burst interval length distribution G(m)=A e*™+A e*™"
of the channel error sequence have following relations:
pu=e™  pp=e™  py=Ae™  py=Ae”

P=1-Pi.  Pu=1Px;  Pu=1-PyPar i
Then, according to a group of field test curves under
different values of C/N, which is measured in a typical and
mobile propagation environment, we set up the adaptive
Markov model with three states with its parameters which
are the functions of C/N by the curve fitting with the method
of nonlinear least square.

III. GENERATING THE ERROR SEQUENCES BASED
ON THE MODEL SET UP

According to the parameters of the adaptive channel model
above set up, we generate an error sequence {e;}, which
describes the long burst error characteristic of mobile
channel under different values of C/N, on a computer by
following method:

1) Set 1=0, assume an initial state s, (s,=1, 2 or 3);

2) Generate a pseudo-random number r; evenly distributed
in the interval [0,1] by the hybrid congruence method.

3) Determine the value of e; under the current state, and
judge the next state according to:

a) If s=3, e=1,

1 when 1,(p,,
{2 when  py<r(p;)tpy,

3 when p;tpy,st;
b) If s=j13, =0,

d
sm:{
3

when 1(p;

when rz2p;

4) i=i+1, return 2).

After generating the error sequence, we estimate its
performance by computing its burst interval length
distribution probability G(m) and average bit error rate Py,
for corresponding value of C/N.

IV. MODEL ACCURACY TEST AND CONCLUSIONS

To verify the accuracy of the adaptive channel model
above set up, we present a test method using threshold
technique and its fundamental principle is as follows:

Since the burst error characteristics of mobile
communication channel is regarded as a Rayleigh
distribution (here only consider the case with severe fading),
we can verify the accuracy of the adaptive channel model
above set up by checking, for each value of C/N, if the burst
error length distribution in {e;} generated accords with a
Rayleigh distribution.

We can first generate a random number with Rayleigh
distribution (denoted by s)) from a random number evenly
distributed in the interval [0,1] (denoted by 1) according to

5;=u,/-

4 nr; (1)

there u is the mean value of Rayleigh distribution, and
therefore generate a random sequence {s;} with Rayleigh
distribution. Then we set up a threshold B as follows

B=u,/~2In{I-F,) (2)

where P, is average bit error rate of a random sequence. The
threshold values for various values of C/N are obtained by
letting P, be equal to the P, under corresponding value of
C/N computed 1n the above performance estimation.

According to above threshold value for each value of C/N,
we quantize {s;} into a (0,1) sequence with Rayleigh
distribution by following threshold comparition method. i.e.,

{ei=0, when s(B '
e=1, when s2B

For the (0,1) sequence with Rayleigh distribution, we
estimate its performance by computing its burst interval
length distribution G(m) and average bit error rate P,. Then
by comparing G(m)" and P,” with G(m) and P, respectively
under the same value of C/N, we observe that both are very
close for each value of C/N, so the adaptive channel model
is accurate to a great extent. Besides, compared with the
conventional general partitioned Markov model where there
are a number of error states, our model is more practical
since it is easy to compute. In one word, it is a feasible
scheme for optimizing mobile communication channel
model.
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Markov Chains for Modeling and Analyzing Digital Data Signals
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Abstract — Digital data transmission signals may be con-
sidered as some specific stochastic process controlled by a
Markov chain. Briefly going into the presentation and evalua-
tion of the power density spectra (PDS) of such processes, one
of our major concerns deals with the computational effort. By
some special grouping among the employed signal elements and
a corresponding partitioning of the controlling transition
matrix, the formula for the desired PDS can be simplified to an
Euclidean vector norm expression. By means of several PDS
graphs the relevance of such an analysis to evaluate or design
real transmission systems may be appreciated.

1. MARKOV CHAIN MODELS

The signals usually employed for digital data transmission can
be considered as some running sequences of discrete, especially
shaped signat elements ({1]). Coding or modulating devices will
generally introduce some memory into the system, thus the next
signal element to be sent may depend on one or more of the previ-
ously sent elements. Therefore the Markov chain theory ([2]) pro-
vides very effective tools for exploring such signals. (e.g. [31,[4]). -

In detail we consider an isochronological stationary Markov
process (pace width = 1-T) that is internally controlled by a homo-
genous Markov chain. For the chain itself we denote the transition
matrix P = (p,;) and the absolute state distribution g = (q;..qx);
either one being independent of the observation time. To prevent
tedious discussion here, we assume the Markov chain to be ergodic
(12]), i.e. P> = (1..1)" (q,.-qx) does exist and all g are > 0.

For the external process realization we consider signal elements
that are individually assigned to the internal states. For convenience
we specify them here in the frequency domain and denote them as
S,(®). In any case the equality of Si(@) = Sfw) assigned to dif-
ferent states is conformable with our model.

Modeling the system comprises first of all the decision on the
abstract Markov states, the real signal elements and the relationship
between them. Eventually the codulator operation and the statistics
of the source data must be introduced into the state transition
matrix. In an advanced model one may think about grouping the
external signal clements in special classes such that some partitio-
ning of the transition matrix becomes obtainable which can finally
lessen the computational effort considerably.

9. THE POWER DENSITY SPECTRA OF MARKOV PROCESSES

Here we are interested in evaluating the power density spectra
(PDS) of our transmission signals. According to the Markov chain
theory a basic formula can be derived (e.g. [3),[4] et alt.) which
then may be rewritten in an Hermitean form using E=Diag(1..1),
Q= Diag(9; -q) » = (51(®@)-.Sx(®@))" and z=exp(-jo).

PDSeon =" +((1-2P)*)! (Q-PTQP)-(1-2P)"s. $))

As a first application of this formula, we look at the maximum
entropy process which is typically equipped with equally distri-
buted state probabilities g = /K- (1..1) or @ = 1/K-I , respec-
tively, and the transition matrix P = (1..1)T-g . In this special case
the symmetric factor in the center of the matrix product (1) reads in
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particularly as K* (L (1..1)T'g)-K"/‘. Now it is important to ap-
preciate that the last symmetric matrix is idempotent ([2]). Thus it
finally turns out that the former equation (1) is obviously equivalent
to the following Euclidean vector norm expression

PDSeu = || K% -(1- Q.1 -q)s [ - @

_ For the more general statistically independent processes where
the Markov states are distributed as g = (q;..qx), the analog result is
easily verifiable:

PDSeont = || Diag(yar..ya)-(I-@. ) -a)sf- B
Eventually we may explore L-value FSK schemes with conti-
nuous phase characteristics. It is most profitable to organize the
signal elements in a 2 level hierarchy: At first we define L classes
of elements in respect to their frequency parameter f,, and then we
identify all possible phase values which occur at the start of each
clement and we denote the necessary quantity of them by M.
Therefore the total of needed Markov states adds up to K=M'L.
The proposed structuring of the signal elements immediately
motivates a conforming partitioning of the transition matrix using
block matrices ([5]). Thus for statistically independent source data,
one can formally establish P = Gt G @l - Gohws
where C stands for a cyclic matrix, the exponents refer to the phase
differences between the beginning and end of the various signal
elements of frequency f,, and the subscripts indicate the matrix’
dimension. Using the notion of a Kronecker product [5] one can
still rewrite 2= (Cor™. Coe™) (-4 )® s '
Following the procedure of the previous examples we finally
arrive again at an Euclidean vector norm expression for the PDS.

PDS o= Dicg(r -fa )@ 1u (L - (G- G (@20 Yo -] (@)

Although this expression could be further evaluated in general
form we won’t discuss this issue here in anymore detail.

3. APPLICATIONS AND FUTURE WORK

In the project “DIG-SPEC - Power Spectra of Digital Data
Signals*, the PDS formulas for several modulated carrier as well as
for baseband coded signals were evaluated. A program package for
computation using these formulas and displaying the graph on stan-
dard VDU is already available. This program system will support
investigations of frequency characteristics and bandwidth require-
ments of existing or new codulation schemes.

In theory we will carry out further studies of Markov processes
employing transition matrices which have block structure and are
particularly capable for treatment by Kronecker products.
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Quantization theory and EC-CELP advantages at low bit rates*

Majid Foodeei!'? and Eric Dubois 2!

Abstract - The goal of this work is to analyze the advan-
tages of recently introduced entropy-constrained code-excited
linear predictive (EC-CELP) quantization [1]. The analysis
is at low rates and in comparison with other EC quantization
schemes. Based on N-th order rate-distortion function (RDF),
EC quantization theory, and empirical methods, RDF mem-
ory gain and empirical space-filling gain (dimensionality N)
at low bit rates are defined and calculated. These gains cate-
gorize and help us analyze and compare the available coding
gains for various EC coders for a given rate and delay (N).

EC-CELP and other EC quantizers EC-CELP addresses
the problems associated with high-quality (near rate-distortion
bound) quantization of sources with memory, operating at low
bit rates, with minimal delay, and low complexity. The objec-
tives are met through combining advantages of VQ, predictive
coding (PC), and analysis-by-synthesis with merits of closed-
loop entropy constrained (EC) codebook design (details in [1]).
Other EC schemes include EC scalar quantization {(ECSQ)
and vector quantization (ECVQ). For sources with memory,
configurations which use a suitable memory removal technique,
such as transform coding (TC) and PC, result in more effi-
cient combination techniques with lower delay (dimension N ).
They include EC block transform quantization (EC-BTQ),
EC-DPCM, and EC predictive VQ (EC-PVQ) [1]. All of the
above EC coders (except EC-BTQ) can be shown to be spe-
cial cases of EC-CELP (EC-CELP’s better performance). We
use a stationary first order Gauss-Markov (GM(1)) source for
our comparisons and analysis. Fig. 1 shows the performance
advantage of EC-CELP over other EC schemes for a given N.
EC-BTQ results for a=0.9 are from a previously published
work. For other a’s, the values are predicted from ECVQ.

Coding gains analysis This analysis is based on RDF val-
ues (SNRapr), EC quantization theory, and empirical meth-
ods. Using a modified analysis scheme of [2], for low rates and
general EC coders we define coding gains over basic ECSQ of
RDF memory gain and empirical space filling gain. For a given
dimension NV and rate R, using a GM(1) source we have

Aty (N, R) = SNRIZV (N, R) — SNR5: ©** (N, R)

Aifﬁi;in.gGu.ussian(N, R) — SNRgic.:d‘}gsussiun(N’ R) _ SNRiE.Di(.:cls.QGauuian
For the low rate region the N-th order RDF is obtained para-
metricly. The top and bottom graphs in Fig. 2, show the
memory and filling gains. For EC-CELP, the ideal PC effec-
tive N is high and hence should nearly provide the high N
gains (top graph). The middle graphs show predicted memory
gain for other coders. The analysis-by-synthesis feature of EC-
CELP, in effect provides for intra-block PC gain (EC-CELP
advantage over EC-PVQ). As the high-R ideal PC estimated
PVQ gains in Fig. 2 show, loss of memory gain due to lack of
intra-block PC gain could be substantial. An EC coder SNR
is approximately the SNRS&E3""+ coder memory and filling
gains. The combined memory and filling gains over ECSQ of
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program of the Government of Canada.
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Commerce, Verdun, PQ, CANADA H3E 1Hé
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EC-CELP for a given N and R is the highest. Hence it yields
the highest SNR (Fig. 1). The efficient memory removal in
EC-CELP allows for the concentration of VQ on the remaining
memory redundancies (especially quantization) and the filling
gain. Also since the resulting EC-CELP codebook size is not
high the resulting EC-CELP complexity is also relatively low.
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Neural Processing of Information
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Abstract — A model is proposed in which the neuron serves as
an information channel. An application of the Shannon
information measures of entropy and mutual information taken
together in the context of the proposed model lead to the
Hopfield neuron model with a conditionalized Hebbian learning
rule and sigmoidal transfer characteristic.

I. INTRODUCTION

A maximum entropy (ME) formulation is shown to
provide the basic functional form of the model neuron including
synaptic weights and a sigmoidal transfer characteristic. This
formulation required the assumption of a set of measurement
functions which are in turn a function of both synaptic inputs
and neuron output. Furthermore, an ME formulation requires
the specification of the statistical moments of the selected
measurement functions which must somehow be supplied by an
unspecified source. An ME formulation is underconstrainted in
the sense that the model neuron cannot find a uniquely
preferable set of moment constraints. Alternatively, a maximum
mutual information (MMI) formulation is shown to be fully
constrained in this regard and can make exclusive use of locally
available information. Solutions take the form of the Hopfield
neuron model with a requirement for a feedback learning
methodology which takes the form of Hebbian learning whereby
the synaptic weights are only modified in response to the
conjunction of input and output neural events. A modification
of an adaptation equation of Oja [1] provides for an algorithmic
solution.

II. MAXIMUM ENTROPY (ME) FORMULATION

An ME formulation yields a Boltzmann distribution for
a single neuron which extracts (measures) certain moments from
its environment. A maximum likelihood decision rule results
which corresponds to that of a deterministic Hopfield [2] neuron
model. A stochastic decision rule is also possible which first
requires the computation of an evidence function which can then
be passed through a sigmoidal non-linearity. Described results
require the specification of the moments of a set of N
measurement functions by a nonspecific supervisor. This is
considered undesirable regarding the development of useful
computing structures constrained to use locally available
information only.

III. MAXIMIZED MUTUAL INFORMATION (MMI)

Maximization of the mutual information between the
neuron vector input x and output y can be accomplished if a ME
distribution form is assumed for P(x,y). The objective is to find
the Lagrange set AeA which maximizes the mutual information
between x and y. This requires finding the extremum of an
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objective function JN = Ixy;N) + (a/2)X™\ over some
permissible ACRY where the additional constraint A=+ is
imposed. Without this constraint, an obvious extremum is A=0
in which case I(x;y;\)=0. A derived Gibbs Mutual Information
Theorem states that the extrema of JQ\) can be found by solving
a system of linear equations which lead to a conditionalized
principal component analysis of the neural input. This results
in a Hebbian learning rule analogous to biological models. This
learning rule attempts to simultaneously minimize the conditional
entropy of the output given the input H(y|x) and also the
entropy of the output H(y) such that P(y)= 1/2 implying that the
neuron output has maximum entropy H(y) for a one-bit channel.
An extremely simple numerical algorithm serves to implement
the developed strategy. Simulation results verify analytical
derivations using simulated test data. These results indicate the
model neuron automatically distinguishes input vectors into two
equally probable classes based on degree of similarity. The
biological equivalent of an action potential is generated for the
preferred class.
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The Most Informative Stopping Times for Viterbi Algorithm:
Sequential Properties
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Abstract — Sequential properties of the Viterbi al-
gorithm are studied basing on a renewal sequence of
the most informative stopping times which can be ex-
plicitly found during the Viterbi recognition of the
most likeliest hidden Markovian state-sequence.

I. INTRODUCTION

The Viterbi algorithm (VA) [1] allows to find the most likeliest
state-sequence (MLSS) of a finite hidden Markov chain (HMC)
{h:} indirectly observed through a process {z:},t =0,...,N.
An optimal rule for the VA can be found via maximizing
the next additive criterion In P{hY, 2.} by a dynamic pro-
gramming (DP) method [1]-[4]. Then the Viterbi recogni-
tion of fzév " or the optimal segmentation of the observations
2y ~' can be obtained by the backtracking t = N —1,...,0:
he = ket1(hes1), where by = argmaxy,y d(hn) and d(-) is the
corresponding additive functional for this DP problem.

The direct implementation of DP requires to store the val-
ues of k; what fills up a table K(m x N) with columns of
back pointers ki : H, — H,-1,t = N,N — 1,... with
Hy = H = {0,1,...,m — 1} but if for a some moment
.?,3]' € H: k3+1(ﬁ3+1) =jfor all hy € ﬁt = H,t > s, then
hs = j is called a special column (SC) in the table K
of optimal DP decisions [2], [3].

Then the moments of the SCs appearing are the most in-
formative stopping times (MISTs) for the Viterbi recog-
nition of HMS [4] because after their appearing further obser-
vations don’t change the previous decisions of the VA.

II. MAIN RESULTS

1. The space of decision for the VA has the same structure
as in Sequential analysis: the regions of acceptance hypothe-
ses correspond to the regions of the SCs appearing as well
as the region of continuation which is located in the mid-
dle. The bounds of these regions have a representation via
min; In pji /pu; [3], [4]-

2. For a HMC with two states and the matrix of transition

p 1-p

1-¢ ¢
types of the back pointers decisions:

i) Identical decisions: p+¢ > 1,4 = In(l1 — p)/q,B =
lnp/(l -— q). If th = dg(l) -_— dt(O) S A, then kg+1(h¢+1) =
hier, = 0, k(hr,~) = 0,8 =1,...,7i = 1i_1 — 1. If DI > B,
then kiri(het1) = bi=r; = 1, k(hr,—s) = 1,s = 1,...,75 —
Ti—1 — 1.

it) Alternate decisions: p+¢q < 1,4 = Inp/(1-4q),B =
In(1 - p)/q. If D{° < A, then kiy1(het1) = hier; =0, and

probabilities P = , and 7; there are three

1, ifs=2r—-1
klhri-s) = { 0, if s=2r,

I D;° > B, then k41 (his1) = he=r = 1, and

0, fs=2r-1
k(hri-s) = { 1, if 5= 2r,
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r=1,...,7i —8 < Ti-1.

iii) Immediate decisions (RCO =@): p+¢=1,A=B =0,
(the underlying MC is degenerated into the independent trials
and the SC's appear at each observation.)

Thus, (i) For m = 2 to store the intermediate information
of back pointers is not necessary; (ii) One can get the same
Viterbi recognition for different HMM; (iii) For m > 3 the
VA can be analyzed as m-1 dimensional random walk on the
underlying Markov chain with m states.

3. For an anticircle HMC with one ergodic class the SCs
appears infinitely often a.s. and the mean and variance of the
time of the SCs appearing can be estimated in many important
cases via the analogues of the Wald’s identities for random
walk on a Markov chain.

4. As in the sequential analysis can estimate the error of
Viterbi recognition [4]. If P7{7(A4,B) < oo} = 1},i = 0,1
and
ar-(A,B) < 1, B:(A,B) < 1, then n® /(1 — ) < A, B <
In!=2) /3. But here, in duality to the sequential test of sta-
tistical hypotheses, the constants 4 and B are given.

5. The duality between the Wald’s sequential analysis
and the VA allows us also to represent the classical sequential
problems such as testing of two simple hypotheses (T'TSH) or
change-point-distribution detection (CPDD) via the VA.

(i)P=<1:€ e ),1>e>0,f0rTTSH.

When (¢ — 0), the VA recognizes the true Markov state-
sequence and therefore the true hypothesis with great accu-
racy. In this case the bounds of the region of observations
tend to oo as € — 0, so the first and second kinds of errors
tend to 0.

(i) P = ( 1;1’ 2. ),1>p,e>0,forCPDD.

(iii)P:( e l-e

1—e ), for a Periodical chain.

6. The renewal properties of the MIST sequence can be
used for the regenerative stochastic simulation for the VA and
estimation of unknown parameters of a HMM by a segmental
K-means recognition.
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Modeling Gauss Markov Random Fields at Multiple Resolutions !
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Abstract — A multiresolution model for Gauss
Markov random fields (GMRF) is presented. Based
on information theoretic measures, techniques are
presented to estimate the GMRF parameters of a pro-
cess at coarser resolutions from the parameters at fine
resolution.

I. INTRODUCTION

There has been an increasing interest in using statistical tech-
niques for modeling and processing images in the computer
vision community. Most of the research has been restricted to
Markov random field models, rightly so, because of the local
statistical dependence of images. The main drawback of MRF
techniques is that the associated optimization schemes are it-
erative and are usually computationally expensive. One way
to reduce the computational burden is to use multiresolution
techniques [1], [2]. In this paper, we present multiresolution
models for Gauss Markov random fields.

II. MULTIRESOLUTION MODELS

Let @@ = {(i,j) :0<i<M-10<j<M—-1}bea

lattice on which a GMRF is defined. The superscript stands
for the level in the image pyramid, 0O s the lattice at the
fine resolution and o represents the lattice that is obtained
by subsampling Q(O), k times. The elements of 0 are in-
dexed by s, where 8 = (s1,82). Let X (F) represent a random
vector, obtained by ordering the random variables on the two-

dimensional lattice Q(k), through a row-wise scan . Let X©
be modeled by a GMRF, then the joint probability density
function of X® can be written as follows:
_ exp{—}2" =) "2"}
- 2

(27) %5 (detT ()3

P(O)(X(O) = z)

where £ is the covariance matrix of X (?). Equivalently, the

X© can be written in terms of a non-causal inter-

process
7®:

polative representation with a neighborhood

0
X0 = 6O, +X0,) 4
ren(0)

where ego), is zero mean, spatially correlated Gaussian noise
with variance [o®]’.

Hence a GMRF process can be completely characterized
by the set of parameters {8,0%). 1t can be shown that GM-
RFs lose Markovianity on subsampling resolution transforma-
tion. However, if lower resolution data are modeled by the
exact non-Markov Gaussian measures, conventional optimiza-
tion techniques based on Markov properties cannot be em-
ployed. We present two methods to estimate the parameters of

1This work was supported in part by the National Science Foun-
dation under Grant #ASC 9318183
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Markov approximations at coarser resolutions. Let P*)(X®)
be the non-Markov pdf at kth resolution and Pg(k)(X ()} be
tl(ll(:) family of Gauss Markov pdfs. Assuming a neighborhood
5
(1) a GMRF approximation can be obtained by minimizing
DIPW(X®) || P (X®)], where D(||.) is the Kullback-
Leibler distance. It can be shown this computation is very sim-
ilar to the conventional maximum likelihood estimation of the
parameters except that instead of using sample covariances,
this uses covariances calculated with respect to PR(x )
measure.
(2) a GMRF approximation can be obtained by minimiz-
ing DIPW (X /X, || PREF X)), ren®. we
call this local conditional distribution tnvariance approxima-
tion. It can be shown that this reduces to a form similar to
the psuedo likelihood parameter estimation, again, uses co-
variances calculated with respect to P®) (X)) measure. In
this case, a closed form solution can be obtained for the pa-
rameters, but if the resulting parameters do not satisfy the
positivity conditions [3], simple gradient descent method can
be used.

Both methods presented above require covariance values
Ep(k)(X,(k)in)r), which can be computed given the GMRF
parameters for X {®) 45 shown below:

x® = xQ
Epw (OXE) = Epo (S0X0,.,0)
© y©y — 1 (AR B2) (A3} 253
Bro(OXY) = 3 2 Ty o,

sen(®)

where A\; = e:vp(\/:—lzh"Ti).

We have used these models for multiresolution texture seg-
mentation and have found that the multiresolution algorithm
performs better than monoresolution algorithms with lesser
computational requirement. In general, these multiresolution
models can be applied for other low level image processing
applications that use GMRF models.
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Detecting Regularity in Point Processes Generated by Humans
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Abstract — Detecting minefields in the presence of
clutter is an important challenge for the Navy. Mine-
fields have point patterns that tend to be regular for a
variety of reasons including strategic doctrine, safety,
tactical efficiency, and perhaps most intriguing the hu-
man element. For example, humans have a tendency
to make lottery number selections, a one-dimensional
discrete point process, in a non-uniform manner. In
this paper, we introduce several simple procedures to
detect regularity in point proceses.

I. INTRODUCTION

The success of vital Navy amphibious assault operations de-
pends on detecting minefields for subsequent neutralization or
circumvention. Reconnaissance data from the surf zone can be
modeled as a point process indicating locations where mines or
more precisely minelike objects have been detected by a sen-
sor. The presence of a minefield produces point patterns that
tend to be regular (i.e., equally spaced). This property is a
potentially valuable discriminant against natural clutter (such
as rocks) that exhibit complete spatial randomness (CSR) in-
dicative of a homogeneous Poisson process model (see [3]).

We first look at a simple and intuitive example. Lottery
number selections consists of n different integers z3,22,...,Zn
between 1 and N inclusive. Proper characterization of human
tendencies can dictate a strategy for selecting numbers that
mitigate the probability of multiple winners and thereby effec-
tively increases expected payofl. For example, it was shown in
[2] that certain individual lottery numbers tend to be selected
significantly more often than others. Presently, we focus on
the interdependency between the entire sequence of n selected
numbers.

II. MINIMUM AND MAXIMUM GAPS

Consider the distances or ”gaps” between adjacent points
{d; = zj41 — 7, : 1 £ j < n}. We hypothesize that humans
tend to avoid extreme gaps because they seem ”"nonrandom”.
This translates into a disproportionately high frequency of se-
lections without a low minimum gap and/or a high maximum
gap. Moreover, we expect the gap range, the difference be-
tween the maximum and the minimum, to be small.

This approach was motivated by a simple but rather sur-
prising recent observation [1] that randomly selected lottery
numbers often have consecutive numbers. It is easy to show
that for the minimum gap U

Pr{U > u} = (N“’;“J’“)/(’;')

For example, the probability of no consecutive lottery num-
bers in Virginia where N = 44 and n = 6is Pr{U > 1} = .462.
A straight-forward application of the inclusion-exclusion prin-
ciple [5] applied to the maximum gap V' gives

Pr{V <o} =) (-1) ("; 1) (N N j”)/ (1:) (2)

320

1)
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where the summation continues over positive entries. The null
distribution for the gap range W =V — U can also be found.
For example, for the Virginia lottery Pr{WW < 4} = .03 and
E[W] = 12. Our conjecture suggests that the expected gap
range is significantly smaller for human selections.

II1. MINEFIELD DETECTION TESTS

Consider a point process of size n on a set A in R? that
has been partitioned into N regions of equal area. Let M,
denote the number of regions containing exactly r points and
Y: denote the number of points in region k. If this process
is generated by humans (i.e., minefields) the lottery analogy
leads one to suspect less empty regions (smaller gaps) than
under a CSR model.

The empty bozes test (EBT) based on My has traditionally
been used to detect the presence of too many empty boxes as
an indication of lack of fit (see [4]). In these terms, humans
tend to overfit. Dividing A into increasing number of regions
and plotting the normalized EBT statistic at each scale pro-
duces a curve similar to the K-function (see [3]). However, the
EBT approach can be more flexible and lacks edge effects and
independence assumptions.

1V. Too LIKELY LIKELIHOOD TESTS
The joint distribution of Y;,Y,...,Yx is multinomial un-
der CSR. In particular, ‘

n
log f(v1,92,---,y~n) =logn! —nlog N — ZMrlogr! (3)

r=2

so that even distributions of the points among the regions are
more likely than uneven distributions. This seemingly creates
a paradox with EBT. For example, the most likely value of (3)
under CSR when n = N corresponds to Mo = 0 (one point in
each region) for which EBT would reject CSR with the lowest
possible p-value.

In this context, EBT is an example of a "too likely” likeli-
hood test (TLLT). Without specifying an alternative, a TLLT
rejects Ho for high values of log f(T') where f is the null dis-
tribution for a statistic T. For the minefield detection scenario
and large values of N, the mean and variances of the TLLT
test statistic can be estimated using a Poisson approximation.
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New Distortion Measures for Speech Processing
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Abstract — New distortion measures are derived
from a recently proposed characterization function
of stationary time series and are shown to be more
robust than some commonly-used distortion mea-
sures such as the Kullback-Leibler spectral diver-
gence in speech processing.

I. INTRODUCTION

Distortion measures are widely used in speech process-
ing to quantify the deviations of speech signals in cor-
relation structure, and among the most successful ones
is the Itakura-Saito (IS) distance of spectral densities
[2], also known as the Kullback-Leibler information di-
vergence [3]. Although in many cases the IS distance
is quite effective in discriminating signals and detect-
ing special changes, its lack of robustness is also well
known documented in the literature, especially when
the signals are mixtures of narrow and wide band com-
ponents such as voiced speech waveforms (e.g., [1]). On
the basis of a method called parametric filtering, we
propose some new distortion measures that are shown
to be more robust than the IS distance.

II. NEwW DISTORTION MEASURES

Given a zero-mean stationary signal {X;}, the para-
metric filtering method characterizes the correlation
structure of {X;} by the demodulated first-order au-
tocorrelation of the form

Yo (n) := R{e ¥ p(a)}

where p(c) is the first-order autocorrelation of the fil-
tered signal Xy(a) := @ Xi—1(a) + X with a := ne™*.
Among other interesting properties of 7y (n), it can
be shown [4], [5] that vs(n) uniquely determines the
correlation structure of {X;} for almost any 6 and is
infinitely differentiable in € (—1,1) even for mixed-
spectrum signals of which the spectral density does not
exist. Using these properties, we define

(_1<"7< 1)’

= Lyh(m) + (ve(ma) + 1) 6(n — ma)
+ (1 = ye(m)) 6(n — )],

po(n)

*T. H. Li is with the Department of Statistics.
t]. D. Gibson is with the Department of Electrical En-
gineering. He is supported by NSF grant NCR-93-03805.
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for any —1 < 1, < mp < 1, where é(n) is the Dirac
delta. Clearly, the function ps(n) forms a (general-
ized) probability density in [1a,7] and, because of its
equivalence to 7g(n), uniquely determines the correla-
tion structure of {X;} for almost any §. Therefore, we
can define the following distortion measure using the
Kullback-Leibler information divergence [3], namely

sl = [ " p0(m) K (o (n)/23(n)) i,

a

iy
sogph) = [ Ko pin) dn

where K(u) := u — logu — 1. Many other distortion

measures can be defined, for instance, from the family
of Renyi’s information [6].

The IS spectral distance is known to be extremely
sensitive to deviations of individual spectral peaks
while less so to changes of overall spectral shapes (or
envelopes). The new measures x(p||p§) and x(p}; pj)
are potentially more robust than the IS distance be-
cause they are finite even when the spectral support
changes. With this property, the new measures are
able to avoid the disproportional sensitivity to fre-
quency shifts and spectral peaks, and thus to discrimi-
nate correlation structures by treating the discrete and
continuous components on an equal basis.
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Nonparametric kernel estimation for error density
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Consider a linear model
yi=1z; 8+ e, i=1,2,", (D
xis are p(==1)dimension known vectors and B( € R®)is an unknown parametric verc-
tor and e; are assumed i. i. d. r. v.’ s from a common unknown desity function f(x)
with
med (¢;) = 0 (2>

Based on LAD (Least Absolute Deviations)estimator  of B, we propose a nonpara-

metric method to estimate unknown f(x). A kernel estimator f,(x) is obtained as

~

- d e~
ful@) = @h)TIXK(S=), = € R, (3)

il »
residuals e;=7y-vi, h, is a postive number, called as window width, k( * ) is a Borel
measurable function on R!. Large sample properties of f,(x) are studied- Some com-

putational esamples are also given.
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Abstract — A comparative analysis of three neural
network models: Backpropagation (BPP), Bidirec-
tional Associative Memory (BAM) and Holographic
Associative Memory (HAM); and a classical method
for error-correction is presented. Each method is
briefly described, results are reported and finally
some advantages are concluded.

I. INTRODUCTION
Error correction is an important topic in any digital commu-
nication system. Classical methods for error-correction are
usually based in Hamming distance techniques. The use of
new technologies like neural networks is presented as an op-
tion for those who need to solve the error-correction problem
in an alternative way.

II. DESCRIPTION

For the classical methods, the linear-block code is used. In this
method, the capability for error-correction is a function of the
Hamming distance in the sense that there exist a theoretical
limit that could be reached for error-correcting depending only
in the minimum Hamming distance between the codewords.
The BPP method is designed as a multilayer feedforward net
based in a supervised learning model. The net is trained with
a predefined set of all the cases involved for the correction;
in other words, for a (n,k) code, all its combinations of one
error must be trained [1]. All these input-output pairs travel
along the layers into the output layer and then are compared
with the desired output value constructing an error signal for
each output unit. In this moment, the error signals are back-
propagated along the net. This process is repeated until a
steady state is reached. Once trained the net, new patterns
are introduced and a response is obtained.

The BAM consists in two layers of processing elements com-
pletely interconnected between them. In the BAM'’s architec-
ture there are weights associated to the connections between
processing elements forming a matrix. This matrix is used to
obtain the recall of the information when new data are tested.
BAM is capable of reconstructing noisy data. The bidirec-
tional nature of the BAM occurs during the recall process[2].
Once trained the net, testing data are introduced to the BAM.
This data are propagated along the two layers and an output is
generated. The output is propagated backwards and the out-
come is compared with the previus input. If no error exists
between them, the recall obtained is the last output gener-
ated, otherwise the process is repeated until a steady state
is reached. The convergence of the recall is waranteed with
a Lyapunov function involved in the stability of the system.
The theoretical limit for error-correction was reached with the
BAM.

The HAM bases its operation in the principle of optical
holography of ”enfolding” information of different phase in a
single plain [3]. The way this analogy occurs is clearly shown
in the ability of the HAM to superimpose multiple stimulus-
response associations onto the identically same correlation set
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representative of synaptic connections within the neuron cell
in a complex number domain. The external field of accepted
words in the alphabet is transformed to a complex plane by
means of a sigmoidal function. This encoded data is set in a
matrix representation for training the net. A new stimulus set
is presented to the HAM for testing. The HAM calculates the
minimum difference between the trained data and the tested
one. A response is generated with the contribution of the
difference between vectors and the closest desired output.

III. RESULTS

Different results were obtained for the three neural networks
used. The results obtained with the BPP net allowed us to
decode the 90 per cent of the cases when testing the net with
the predefined input patterns(128 patterns(l,4]).

For an specific (7,4) code with minimum Hamming distance
equal to three, one error was corrected with a BAM trained
with only 16 words allowed in the alphabet.

HAM’s results show that, as in the BAM’s case, the theoret-
ical limit of one error corrected was reached with a minimum
of 16 alphabet words trained for the (7,4) code. Its important
to notice that the HAM also corrected more errors than the
theoretical limit in 60 per cent of the cases.

IV. CONCLUSIONS
This work shows tbat neural methods employed for error-
correcting presents an alternative for other error-correcting
techniques with the advantage of its simplicity of program-
ming and in its good correcting rates.
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Abstract — This paper deals with a new type of
covert channel problem that arose when we designed
a multilevel secure computer (MLS) system, using
a quasi-secure, asynchronous, communication device
called the Pump. We call this new type of covert chan-
nel a statistical channel. It is our hope to get feedback
from experts who work in the intersection of informa-
tion theory and statistics.

I. INTRODUCTION

In a (MLS) system, Low may write to High, and High can
read from Low, but High must never be able to write to Low.
However, in a MLS system, the need for an acknowledgement
(ACK), which is a write from High to Low, to a message sent
by Low to High can violate the multilevel security policy by
creating a covert (communication) channel.

Consider a case where Low sends messages to High. A
simple approach that does not allow High to send an ACK
to Low places a buffer between Low and High. Low submits
messages to the buffer, the buffer sends the ACKs back to
Low, and High then takes messages from the buffer. If the
Low (sending) rate is faster than the High (receiving) rate,
Low will write over unread data in the buffer (since the buffer
is finite). An obvious solution to this problem is to not allow
Low to send messages until there is a space in the buffer. This,
however, results in a large capacity covert channel between
High and Low (if Low is not allowed to send messages to a
full buffer, then High can send symbols to Low by removing
or not removing messages from the buffer and hence causing
the buffer to be full or to have space on it).

II. THE PuMpP

Our approach, the Pump [1], still places a buffer (size n)
between Low and High, but has the buffer give ACKs at prob-
abilistic times to Low based upon a moving average of the past
m High response times (Hm;). A high response time is the
time from when the buffer tells High that it has a message to
the time when High actually removes it. This has the dou-
ble benefit of keeping the buffer from filling up and having a
minimal negative impact upon performance.

Using a moving average is a very important part of the
Pump. However, it gives rise to a new type of timing channel
(for detail, see [1]). We will now sketch an implementation
of the Pump. Let O, be the communication overhead for the
Pump. By this we mean that O, is the minimum value for
any L; (which is the ith response to Low). The L; are given
by a random variable that has the density function f;(t).

There are two cases to discuss:

Case 1: The buffer is not full.

f‘(t) = { g,ie

The mean of the above density function is Oy +1/a;. Since
we wish for this mean of fi(t) to be equal to the moving
average of the last m High ACK times (Hn;) we see that
a; = 1/(Hm; — Oy). If Hy; = Oy, then set 1/a; = ¢, a small
number.

Case 2: The buffer is full.
This case is not germane to this paper.

"0, if O, <,

otherwise.

ITI. CovERT CHANNELS
A timing (covert) channel exists when the output (Low)

alphabet consists of the different times of the same response,
these different times (e.g.,yes arriving at 3t or 5t¢) being due
to High behaviour. Historically, work on timing channels has
used very simple tools from information theory, for example
[2). In the course of our work we have come upon a new
type of timing channel that defies analysis by our research
community. It is our hope that, by presenting a paper at this
workshop, we will get feedback from experts who work in the
intersection of information theory and statistics.

We introduce a new subspecies of timing channel referred
to as a statistical channel. The Low alphabet consists of dif-
ferent time values and these time values are given by a random
variable with certain parameters and these parameters are de-
pendent upon High actions.

Definition 1 If High can affect a parameter in the distribu-
tion of some system response time to Low, we say that there
18 a statistical channel between High and Low.

In the Pump, High can modify the moving average by af-
fecting the last m time values of High’s responses to the Pump.
It is possible for Low to detect differences in High'’s actions
by trying to guess what the moving average is. This creates
a statistical channel and, therefore, insecurity. For now, let
us forget that the exponential density has been shifted by the
communication overhead time, and simply view the inputs to
the channel as the High response times. We state a simpler
form of our problem as:

What is the capacity, in bits per unit time, of
a communication channel where the output is an
ezponential random variable whose mean is the
moving average of the past m input times?
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Asymptotic Performance Evaluation of Mismatched Vector
Quantizers Using Sub—Gaussian Sources

Frank Miiller
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Abstract — Asymptotic (high rate) quantization the-
ory is applied to the multivariate mismatch problem.
This means, the question is addressed how much is
lost if a vector quantizer which is matched to a specific
source with given parameters is used for quantization
of a source with different parameters. For parame-
terization of the sources sub-Gaussian processes are
employed.

I. INTRODUCTION

Vector quantization (VQ) is an often used method of lossy
source coding. Usually, a vector quantizer is optimized by a
training sequence which is expected to represent all the sta-
tistical characteristics of the samples to be quantized. In the
most practical cases, however, it is impossible to find such
a training sequence, because real source signals show time-
varying statistics. Therefore, vector quantization is often im-
plicitly coupled with the mismatch problem.

Performance evaluations of mismatched vector quantizers
are interesting not only from an information theoretical point
of view. They also give clues to design a robust quantizer un-
der the knowledge that the actual source statistics are vary-
ing. If mismatch is eventually unavoidable, a vector quan-
tizer should be designed under such conditions that mismatch
around the operation point shall only weakly affect its opti-
mum performance.

Only few results concerning mismatched vector quantizers
are reported. The main reason being the lack of an appropri-
ate comprehensive multivariate model. The situation changed
when the engineering community became aware of the class of
spherically invariant random processes (SIRP) and developed
parametric source models [1][2]. SIRPs have the property that
they are completely described by the univariate (marginal)
density function and the linear statistical dependencies (co-
variances or covariations) between the random variables.

More important from a practical point of view, however,
is that SIRP models reflect the statistics of a wide variety of
sources. Band limited telephone speech samples [1], mean-
removed image blocks [2], subband image statistics [3] and
prediction error images [4] show elliptically shaped bivariate
distributions, thus allowing SIRP modeling.

II. MISMATCHED VECTOR QUANTIZATION OF
SuB-GAUSSIAN SOURCES
In [5] 2 new SIRP-model has been developed which employs
symmetric stable densities [6] as marginal densities. Symmet-
ric stable densities are defined as densities having a character-

istic function of the form:
#(t) = exp(—[t|*), with v<0,0<a<2. (1)

The stable distribution has much thicker tails than e.g. the
Gaussian, thus allowing to model real world phenomena in-
cluding outliers accurately with the aforementioned class of
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SIRPs. Moreover it has been shown in [5] that the class of
SIRP-processes with symmetric stable densities is identical to
a class of processes termed sub-Goaussian processes in math-
ematical statistics. Sub-Gaussian processes are completely
parameterized by a shape parameter (called characteristic ex-
ponent) and a covariation matrix. With the characteristic
exponent the shape of the distribution can be varied. The
covariation matrix plays an analogue role as the covariance
matrix in the classical second-order process theory. With the
covariation matrix the variation (i.e. the stable analogue to
the variance) as well as the linear dependencies between the
samples can be adjusted.

Since the symmetric a-stable distribution (1) is completely
specified by only two parameters (stable exponent a and vari-
ation ) the mismatch problem can be formulated and solved
in terms of shape and varigtion mismatch. Applying sub—
Gaussian sources to the asymptotic (high rate — low distor-
tion) quantization theory [7], we evaluate the relative perfor-
mance of mismatched vector quantizers for these mismatch
conditions. So, the question what happens, if the actual
source distribution differs in shape from the distribution the
quantizer is optimized for, can be answered employing sub-
Gaussian processes as source model. It turns out that the
robustness of a vector quantizer depends strongly on the di-
mension of the quantizer. Furthermore, vector quantizers re-
spond — like scalar ones — unequally to mismatch around
their operation point. However, the sensitivity against mis-
match is reduced with increasing vector dimension.
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CONTINUOUSLY EVOLVING CLASSIFICATION
OF SIGNALS CORRUPTED BY AN ABRUPT CHANGE
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ABSTRACT - Bayes decision theory is based on the
assumption that the decision problem is posed in probabilistic
terms, and that all of the relevant probability values are known
[1]. The aim of this paper is to show how blind sliding window
AR modeling is corrupted by an abrupt model change and to
derive a statistical study of these parameters.

IINTRODUCTION
The aim of this paper is to study the behaviour of continuously
evolving classification when applied to signals presenting an
abrupt change. AutoRegressive (AR) parameters are widely
used to constitute the observation vector. The first part shows
how sliding window AR modeling is corrupted when applied
to signals that change abruptly. The second part studies the
evolution of AR parameter statistics used in random process
classification.
IT SIGNALS PRESENTING ABRUPT CHANGE

Let us consider a particular signal y(n) defined by the
succession of two stationary signals v ,(n) and y,(n) with
an abrupt change occurring at n=N,. A blind sliding
window AR modeling of y(n) (that is to say without any
previously detected change) leads to the solving of a set of
Yule and Walker equations [2]. The theoretical time

dependent AR parameter vectors are given by :
nsSN, a, =8 (AR parameter vector of y,(n))

N,+1<n<N,+L a,~[c,0--0}

N, +L+1%n a, =98, (AR parameter vector of y,(n))

L being the AR model order and ¢, a vector composed of

n-N,-1 the Levinson Durbin Recursion (LDR)
coefficients of the second signal y,(n). When
N,€nsN,+1L-1, AR estimation then leads to an AR
vector a, with only n- N, -1 non zero coefficients [4].

III AR PARAMETER STATISTICS
We then study the case of random AR parameters. The a,

probability density function (p.d.f) allows us to analyse the
evolution of the class shape when the sliding window moves.
Let us denote :

T _
Ve=[aw i Quor -1y Qeriyr Qeik-1)0 o000 Lyl

au.y (with j=1,...,i) being the i'" order linear

predictor coefficient estimator of the 2"¢ model. k varying
from 1toLsuchthat n=N,+1+k,

For n2 N, +L+1,weget V, =8,. The vector V, is then
the second AR model parameter vector, the p.d.f of which,
denoted by f,(v,,....v,), is assumed to be known.

97

This last hypothesis is not restrictive because in pattern
recognition, AR parameter statistics which characterises
within-class scattering is usually assumed to be known
(generally gaussian).

The next point of this study is to determine the V,_, p.df,

denoted by fi-1(vs,...,v1) as a function of that of V', , k

varying over [1...L]. The first L - k components of these
two vectors are equal. Their last & components verify the
following relations :

a -Qa a -
ISan"N,.—l (n.J) (r.n)Y(n.r-J)

a =
(n-1,j) 2
1-ag.

These relations can be inverted and allow us to determine the
jacobian of the transformation between the two vectors V, _,

and V, [3]. We then obtain :

s-
Fer(Ugyeenuy)=(1 'U:) : Fe(Uis e Uy Up F UYL ooy U F UYL )

&-2
Feor(Wre,0))=(1+0) (1 =0d) * FalUiy oot U Ul v 00, ey

(1 +0)ug0,00, U +0,0,)
With L recursions, we may then determine the statistics of
thedifferentvectors ¢, for n=N,+1 to n= N, + L.These

statistics allow us to study the evolution of the class shapes
when the sliding window moves.

CONCLUSION

We show that sliding window AR modeling, applied to two
stationary AR signals with an abrupt change, gives parameters
which follow the Levinson Durbin Recursion. We give a
recursive method making it possible to find the probability
density function of these parameters when the sliding window
moves. Class shapes may then be described in a continuously
evolving classification.
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The Finite-Sample Risk of the k-Nearest-Neighbor Classifier
under the L, Metric

Robert R. Snapp!
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Abstract — The finite-sample risk of the k-nearest
neighbor classifier that uses an L, distance function
is examined. For a family of classification problems
with smooth distributions in R"™, the risk can be rep-
resented as an asymptotic expansion in inverse pow-
ers of the n-th root of the reference-sample size. The
leading coefficients of this expansion suggest that the
Euclidean or L, distance function minimizes the risk
for sufficiently large reference samples.

I. THE k-NEAREST-NEIGHBOR CLASSIFIER

Let the elements of I = {1,2} denote two states of nature,
or pattern classes, and let Py and P, = 1 — Py denote their
corresponding stationary prior probabilities. Each pattern is
represented by a feature vector X, drawn at random from
IR". Specifically, patterns originating from class £ € IL are
generated by the stationary conditional distribution Fy.

Labeled feature vectors are generated by a two-step process.
First, a class I € IL is chosen at random so that P[L = £{] = P,
for £ € IL; then a random feature vector is drawn according
to Fr. After m independent repetitions of this process, we
obtain the labeled reference sample,

X = {(X', LY),...,(X™, L™}

Given an L, metric, and an arbitrary point x € IR", the
indices of the labeled feature vectors in Xy, can be permuted
so that

=X lp < flx = XPllp < - S Hx = X7l (1)

Here ||x||p = (|z1lP+--- + |za]?) /P for 1 < p < oo, and
ixllo = maxi<i<n |z:], denote the L, norm. The k nearest
neighbors of x then form the subset {(X', L), ..., (X*, LF)};
and the k-nearest-neighbor classifier assigns X to class L'(x) =
maj(L',..., L*), viz., the most frequently appearing class la-
bel in the subset. (Ties, and degeneracies in (1), can be re-
solved by an arbitrary procedure.) Using this algorithm every
point in R™ can be assigned to a class in IL.

1I. THE FINITE-SAMPLE RiISK

Given a positive integer k, an L, metric, and a finite ran-
dom reference sample X, a single test vector (X, L), drawn
independently by the same random process, is assigned to class
L' = I'(X) by the k-nearest-neighbor classifier. We now con-
sider the m-sample risk,

Rm=P[L'=1,L=2]+P[L'=2,L=1],

1This work was supported in part by Rome Laboratory, Air
Force Material Command, USAF, under grant number F30602-94-

1-0010.
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for two-class problems that satisfy the following smoothness
conditions:

C1. For £ € {1,2}, the class-conditional distributions F are
absolutely continuous over IR and have corresponding
densities f.

The mixture density, f = Py f1 + P2 f2, is bounded away
from zero a.e. over its probability-one support S C IR".
Each class-conditional density, fe, possesses uniformly
bounded partial derivatives up to order N + 1 almost
everywhere on its probability-one support.

One or the other of the class-conditional densities van-
ishes close to the boundary of S.

C2.

C3.

C4.

Theorem 1 Under Conditions C1 through C4, there exist
constants c;, for 3 =2,3,..., N, such that

N
m = Roo+ Y cim /" 4 O(m~ (NI

J=2
where Roo is the infinite-sample risk derived by Cover and
Hart [1].
A proof of this theorem, including derivations of the ieading
coefficients, will be published separately. (An analogous proof
for the nearest-neighbor classifier (k = 1) under the Euclidean
metric (p = 2) appears in a recent paper [2].) For the coeffi-
cient ¢z, we obtain

T(k+1+2)
24 [T (52)]°

/de F BB <;_1v2f1 + %v% _ %v?) ,

Cy = Dn (p)

where Pafe(x)
5 _ D _ e fuXx
Pr= P = =50

denotes the posterior probability that a feature vector with
value x originates from class £. In the above,

1‘(;"—,+1)F(§+1)”(2’")
r(=2+1)T (L +1)°

has a global minimum at p = 2 for fixed » > 1. This suggests
that under the above assumptions the Euclidean metric is the
optimal L, distance function, if m is sufficiently large.

Da(p) =
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Characteristics of a Statistical Fuzzy Grade-of-Membership Model
in the Context of Unsupervised Data Clustering
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Abstract — We have elucidated the position of
Woodbury’s statistical fuzzy Grade-of-Membership
(GoM) model in the unsupervised clustering domain.
This implementation of the model is shown to oper-
ate not only on multivariate categorical data, but on
permuted, or encoded, data as well.

I. INTRODUCTION
We present results of a fuzzy unsupervised clustering
paradigm, applying Woodbury’s [1, 2] statistical fuzzy Grade-
of-Membership (GoM) model to the problem of identifying
natural clusters and statistical structure in data. Extensive
theoretical development and empirical evaluation of the GoM
clustering paradigm is presented by Talbot, et. al. [3].

II. GoM CLUSTERING PARADIGM

The GoM model simultaneously estimates profile probability
densities and memberships for a fuzzy partition. Model pa-
rameters estimated from the data suggest a latent structure
which may simplify coding, classification, and other analy-
ses of high-dimensionality data. GoM clustering provides a
more general framework for data analysis compared with con-
ventional clustering paradigms in many cases. GoM model at-
tributes that contribute to its generality in this context include
its operation on categorical random variables, foundation in
fuzzy set mathematics, and detachment from distance mea-
sures. A major model attribute, operation on categorical ran-
dom variables, contributes to broad applicability—admitting
categorical or even coded input data and allowing for non-
linear partitions. Because the data is represented by a finite al-
phabet, the model is also less sensitive to disparate scaling and
outlying samples in many cases. A second model attribute,
its fuzzy set basis, allows for characterization of more com-
plex sources of heterogeneity in the data. A third attribute
of the GoM model is its detachment from distance measures.
By considering distance only indirectly through transitivity
relationships, the model elucidates data structures primarily
based upon characteristics of the estimated data distributions
rather than upon distance computations between points in the
space. This detachment from distance measures not only pro-
vides an unprecedented opportunity to evaluate the statistical
composition of the data source but also offers new insights into
structural mechanisms affecting coding performance.

III. GoM CLUSTERING EXAMPLES

GoM clustering performance was compared with conventional
vector quantization (VQ), fuzzy c-means (FCM) clustering,
and deterministic annealing (DA) clustering to highlight dif-
ferences between partitioning based upon distance measures
versus that based upon statistical data structure. Continuous
ordered data was quantized to produce categorical data.
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Experimental outcomes for a two-dimensional unit step ex-
ample demonstrate that the GoM model can provide an in-
tuitively satisfying partition and structural determination as
well as excellent background discrimination.

Figure 1 shows GoM clustering results for quantized and en-
coded multivariate Gaussian data derived from crisply defined
distributions. The encoding clarifies the categorical nature of
GoM clustering and also suggests potential applications for
analysis of unconventional data sets which may be generated
as the output of an encoder or classifier. In this case, GoM
clustering provides an ideal partition of the encoded data as
well as density estimates for sample data derived from each
cluster. The log-likelihood value was experimentally shown to
be a suitable clustering criteria, providing a strong correspon-
dence to performance.

(a)

Fig. 1: GoM clustering of multivariate Gaussian source: (a) quan-
tized data and (b) quantized and encoded data. Gray level repre-
sents membership in each of two clusters.

(b)

IV. CONCLUSIONS
The GoM clustering paradigm supplements existing meth-
ods to broaden the application base and provide additional
partitioning alternatives. The encouraging results suggest
many applications in coding and classification, especially when
employed in concert with conventional techniques.
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Function Estimation via Wavelets for Data with
Long - Range Dependence

Yazhen Wang*
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Abstract — For a fractional Gaussian noise
model, we derive asymptotics for minimax risks
and show that wavelet estimates can achieve min-
imax over a wide range of spaces. This article also
establishes a Wavelet - Vaguelette Decomposition
(WVD) to decorrelate fractional Gaussian noise.

Introduction

Suppose we observe a function f from regression
(1)

where ¢; are zero mean stationary normal errors
with long - range dependence.

Long - range dependence occurs in many ap-
plications. For example, it happens in data from
geophysics and hydrology, economical time series,
biological signals, image generation and interpo-
lation, texture classification, noises in electronic
devices, frequency variation in music, and burst
error on communication channels. Signal pro-
cesses with long - range dependence have much
more persistent long term correlation structure
than the well studied short - range processes such
as ARMA processes and mixing processes. Tra-
ditionally, these process with long - range depen-
dence have been mathematically awkward to ma-
nipulate. This has made the solution of many of
the classical signal processing problems involving
these processes rather difficult.

Fractional Gaussian noise provides a useful
model for phenomenon exhibiting long - range de-
pendence. We propose a fractional Gaussian noise
model, which is an approximation of the nonpara-
metric regression model (1), and then establish
asymptotic results for minimax risks. Because of

yizf(.’ﬂi)'*'Ei, ’I:=1,'°',’fl,

*This work was in part supported by NSF Grant DMS-
94-04142
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long - range dependence, the minimax risk and
the minimax linear risk converge to zero at rates
that differ from those for data with independence
or short - range dependence. It is shown that a
wavelet estimate with resolution level - dependent
threshold can be “tuned” to achieve minimax over
Besov bodies with p < ¢. Linear estimates can not
achieve even the minimax rates over Besov classes
when p < 2.

The key to prove the asymptotic results is to
decorrelate fractional Gaussian noise and frac-
tional Brownian motion via WVD by utilizing
the idea of simultaneous diagonalization through
WVD described in Donoho (1992) and the fact
that Fractional Gaussian noise is linked to. frac-
tional differential operators which are almost di-
agonal in a wavelet basis.

Decorrelation of fractional Gaussian noise and
fractional Brownian motion via WVD has its own
interest. In fractal signal processing, it is very
desirable to decorrelate fractional Gaussian noise
and fractional Brownian motion (e.g. see Wornel
and Oppenheim (1992)). Although wavelets re-
duce dependence of fractional Gaussian noise, the
wavelet coefficients of fractional Gaussian noise
and fractional Brownian motion are correlated
and hence wavelets themselves do not decorrelate
fractional Gaussian noise and fractional Brownian
motion. Fractional Gaussian noise and fractional
Brownian motion can be decorrelated by WVD.

Moreover, we employ two WVDs to solve the
following linear inverse problems in the presence of
indirect, noisy data with long - range dependence

yi = (K f)(=:) + &4, (2)

where ¢; are zero mean stationary normal errors
with long - range dependence and K is a linear
transformation.

i=1,---,nm,




Unsupervised Medical Image Analysis by Multiscale FNM Modeling
and MRF Relaxation Labeling
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Abstract — We derive two types of block-wise FNM
model for pixel images by incorporating local context.
The self-learning is then formulated as an information
match problem and solved by first estimating model
parameters to initialize ML solution and then con-
ducting finer segmentation through MRF relaxation.

) I. INTRODUCTION
The main difficulty of unsupervised medical image analysis is

that the model parameters are unknown and the priori context
is unobservable. Any noncontextual algorithm is likely to per-
form poorly since locally there may not be sufficient informa-
tion to make a good decision. The spatially dependence among
pixels is one of some fundamental concerns and a reasonable
assumption is that neighboring pixels are likely to have simi-
lar gray level and the same label. In the two main approaches
to this problem, the MRF model-based techniques are often
heuristically determined and computationally prohibitive [1],
while the conventional FNM models only reflect partial con-
text information in either global or pixel scale. This paper
presents a new self-learning strategy based on stochastic reg-
ularization. The originalities are: 1) two types of block-wise
FNM models are derived for pixel images by incorporating lo-
cal context; 2) a unified information match criterion is applied
to both model determination and pixel labeling.

II. MuLTisSCALE FNM MODELING
FNM modeling has proven to be a successful tool for medical

image analysis that is mainly due to the validity of the inde-
pendent approximation of pixels according to image statistics
[2]. We extend this framework to include local context in
multiscales. Assume a medical image with N? pixels and K
regions. After dividing the image into disjoint blocks, the joint
probability density function {pdf) can be well approximated
by a block-wise conditional FNM model given by

N3/c?2 g 2

re= [ TITI szk

r=1 k=1 i=1

_ (9:7" - ll‘k)z )]l,.k
202

1)

exp (

where pux and o} are the mean and variance of the kth region,
¢ is the block size, and I, is the label associated with the rth
block. By randomly reordering the neighboring pixels of the
ith pixel, a new joint pdf of pixel images can be defined by
introducing the local context into the standard FNM model
in block form

Qx) =ﬁf}(2 D SO WO it L
¢ -1 \/2x0s 202

t=1 k=1 =1

where 1 denotes the neighboring pixel with the label I, and
the local context is naturally translated into non-parametric
bindings by Bayesian priori probabilities. The problem ad-
dressed here is the combined estimation and detection of the
regional (pk,07) and structural (¢, K) parameters and the
contextual (Irx,lix) variables, given the observations x.
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III. INFORMATION CRITERIA AND ALGORITHMS
The unsupervised estimation and detection can be character-

ized as an optimal information match problem. By minimizing
a unified cost function, we solve this problem using stochastic
regularization with two steps. Since parameters and variables
in (1) are non-random unknown constants, we introduce a new
model-fitting procedure derived from the modified global rel-
ative entropy, namely, the minimum bias/variance criterion

(MBVC)
@x(u)

Qul#3?)

where fgﬁc) is the ML estimate of the parameter vector,

Qx (u) is the image histogram, and Q(u[i‘gﬁc) ) is the standard
FNM. The balancing of decomposed model bias and variance

yields

MBVC(K,c)= N Qx(u)log +3K -1 (3)

(4)

with a simple optimal appeal: a minimum bias and variance
model maximizes the information match [3]. Since (2) treats
pixel-based labels as discrete random variables, by minimizing
the expected Bayes risk, the Bayesian detection will classify
pixel 7 into region j, if

(Ko, c0) = Arg{r?(in MBVC(K,c)}

21

- b 1 (zi — px)?
J—Arg{lgzxx<z 721 o O (5} ()
=1

The block algorithms take advantages of the ML estimator
being regional-structural separable and the MRF relaxation
with local context revision consistency.
A. Multiple Resolution Block-Wise CM (MRBCM):
1. Given r(o), € = Cmaz + 1
2.c=c-1
¢ dxi(r,5) =log(ej/ov) +[07 ~ 0F + (ur — ;)*}/20?
o IV = 1,if k = Arg{min; <, <x drcz(r, j)}
i o
Al < B K W T
o Continue until (1(™+1) _107)) = ¢
3. Stop when minimum global bias is reached.
B. Local Contextual Bayes Relaxation Labeling (LCBRL):
1. Given 19, m=0
2. m=m+1
e Randomly visit each 1 and calculate Zf__;l :élfT
¢ Update lix according to (5)
3. Continue until (1(™+1) — 1My = o,
Simulation results show the efficient and robust performance.
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An Additive Congruential Method for Generating a Multiple
Occurrence Uniform Random Sequence

Dumitru M. Ionescu and Mark A. Wickert
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Abstract — The formalism behind a mnovel addi-
tive congruential method is described. This method
yields uniform random sequences whose outcomes oc-
cur more than once throughout the sequence.

I. INTRODUCTION

An approach to generating a uniformly distributed pseudo-
random sequence (PS) is presented; the method is based on
addition rather than multiplication hence the name Additive
Congruential Method (ACM). For a gelected prime, p, the PS
is a sequence of random variables (RV) over the Galois field
GF(p). The ACM yields a Markov PS, where each valid out-
come appears more than once within the main period, and still
obeys a uniform distribution (UD). It is argued that such a PS
shows improved randomness over the standard Multiplicative
Congruential Method (MCM) [1].

11. THE MAIN RESULT

The PS is a chain of RVs over GF(p), p prime. Theorem 1 and
Corollary 1.1, stated, for the purpose of this paper, without
proof, guarantee a uniform distribution on outcomes.

Theorem 1: Let p be a prime, p > 2, andlet k €R, 1<
k < p — 2. Perform all possible modulo-p products between
& distinct elements from GF(p)\{0}. The number of occur-
rences, among the (";1) results will be the same for each
element in GF(p)\{0} iff k|(3Z}) .0

The proof uses the structure of GF(p) to write a finite differ-
ence equation with the distribution on outcomes as solution;
its unique solution is the UD. Maultiplication translates into
addition if we let £ = o, i =0,p— 1,Vz EGF(p), a € GF(p)
primitive. The corollary follows.

Corollary 1.1: Let p be a prime, p > 2, and let k €
R,1 < k < p— 2. Perform all possible modulo-p additions
of k distinct integers from GF(p)\{p — 1}. The number of
occurrences among the ("’ ;1) results will be the same for each
element in GF(p)\{p — 1} iff & I(Z:i) .0

The ACM relies on Corollary 1.1. If we calculate the em-
pirical probability transition matrix (PTM), we see that it is
doubly stochastic. Clearly, this is due to the UD on outcomes.
Thus we may view the PSasa realization of some time invari-
ant Markov process (TIMP) with a doubly stochastic PTM.
A TIMP approaches a UD iff its PTM is doubly stochastic.

Definition 1: Model the ACM generated PS as a realiza-
tion of some TIMP with doubly stochastic PTM. A natural
measure of randomness for the ACM sequence is the degree of
randomness of the associated Markov process.

In order to use Definition 1, we need to define a measure of
randomness for the TIMP with doubly stochastic PTM. Such
a measure, conjectured to be well-defined, is suggested by the
following argument, which needs to be formalized. Contrary
4o the MCM where once an outcome has occurred an observer
can count on the fact that it will NOT occur again within the
main period, in the ACM PS there are multiple occurrences
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if k > 1. This is perceived as better randomness yet the
distribution on the states of the TIMP is still not uniform,
although the ensemble distribution is uniform. Consider the
situations when an arbitrary integer in GF (p) can be followed
by (1) some integers in GF(p), but not all of them and (2)
any integer in GF(p). Clearly, the latter PS is more random
gince we are less able to ‘predict’ the next outcome. It can be
shown that if P is a doubly stochastic matrix of order m then
P", n € X are stochastic and all entries in Po = limp—co P"
are equal. But P" is the PTM of a Markov process described
by P after decimating by n; hence retaining every nth sample
achieves a more uniform distribution of states at any time
instant. This is not possible with a MCM PS because of unique
occurrences. The eigenvalues of P" are the nth powers of
the eigenvalues of P and approach the eigenvalues of Pe,
which are zero except for one that equals one. As stochastic
matrices, P*, n > 1, and Pe each have a unity eigenvalue,
thus the magnitudes of the non-unity eigenvalues of P" are
less than one (in order for the nth powers of the remaining
n — 1 eigenvalues to approach zero as in Peo). Since p is
prime, m = p — 1 is even hence there is at least one more
real eigenvalue Aon 7# 0, |Aoa| < 1, for each of P", n 21 and
the tendency to improve randomness as n — 00 reflects the
tendency of Aon to approach zero. A randomness measure for
a TIMP with doubly stochastic PTM P could be the inverse of
the largest of the magnitudes of all rea], non-unity, eigenvalues
of P. This however is impractical since limp—co Al =o0. K
for P = [pij], Padj = laij], 1,5 =1,n where a;; = pij if pi; =0
and a;; = 1 if pij # 0, then a more attractive measure is
R = max; {\; “)\,‘I <1,3%; 3 PagXi = Aax;} <p-—L This
ss well defined if as conjectured, R increases as Py becomes
less sparse.

III. EXAMPLE
For p =11, k = 3 one implementation of the ACM yields PS:

03670369267036947123921458581470503690925818149258369
47036920379258147069258258581470381473614702570364692
58136925814147. The (doubly stochastic) PTM is

f0 01801 10 0 1]
00119000 1 0
110102810 00
00000O0®9 1 11
P=_1_0100011801
2|1 0000001 100
01001002 0 8
91010000 01
08110200 00

|1 09 02000 0 0]

and R = 4.07. Interleaving every 30th entry until all entries
are exhausted yields a PS with Pag; less sparse and R = 6.48.

REFERENCES
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Addison-Wesley Publishing Co., 1968.




An Asymptotic Property of Model Selection Criteria

Yuhong Yang
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Abstract — Probability models are estimated by use
of penalized likelihood criteria related to AIC and
MDL. The asymptotic risk of the density estimator
is determined, under conditions on the penalty term,
and is shown to be minimax optimal. As an applica-
tion, we show that the optimal rate of convergence is
achieved for density in certain smooth nonparametric
families without knowing the smooth parameters in
advance.

I. INTRODUCTION

Both AIC [1] and MDL [2] are widely used model selection
criteria based on information-theoretic considerations. Re-
cent work described in the talk by Barron at this workshop
suggests that in certain cases the minimum description length
principle can yield a minimax optimal criterion of the form
-log(likelihood)+const - m as opposed to -log(likelihood) +
2 log(n) where m is the number of parameters in the model
and n is the sample size. The penalty term in this crite-
rion is of the same order as that in AIC which takes the
form -log(likelihood)+m. Previously an asymptotically op-
timal property was obtained for AIC applied to sequence of
linear models in estimating a nonparametric regression func-
tion with fixed design [3][4]. In this work, we consider criteria
of the form

n
- Z log fr(Xi, ék) + A

i=1

where A, is a positive constant and ék is the maximum likeli-
hood estimator of 8, in model k. In this work A is specified so
that the desired asymptotic results hold. Here X,,..., X, are
an i.i.d. sample from an unknown density f(z) w.r.t. some
o-finite measure.

To handle also selection problem involving large numbers
of models of each dimension m, we consider criteria of the
form

‘ZIOE Fr(Xi,8k) + M + Ci

i=1

(*)

where C} is a model complexity satisfying Kraft’s inequality
Zk 27C < 1. We note however that Axm; does not neces-
sarily correspond to a description of estimated parameters, so
(*) does not necessarily have a total description length inter-
pretation, so that the work of Barron and Cover [5] does not
apply.

We evaluate the new criteria by comparing the Hellinger
loss d¥(f, f,;’(;)_e) with an index of resolvability. The concept
of resolvability was introduced in [5]. It naturally captures the
capability of estimating an unknown function by a sequence
of models. The index of resolvability can be defined as

Cy,

—inf{ inf & me | Ck
Rn(f)—“;f{o:ggkdfl(fafk,ek)'*' —+

The first term info, co, d(f, fr0,) reflects the approxima-
tion capability of the model k to the true function f(z), the

103

second term Tk reflects the variation due to estimating the
best parameters in the model, and the last term an reflects
the complexity of the model relative to the sample size. The
index of resolvability quantifies the best tradeoff among the
approximation error, the estimation error and the model com-
plexity.

II. MAIN RESULTS
It is shown in this work that with the new criteria and un-
der some reasonable smoothness conditions on the paramet-
ric families and under some restriction on Ak, the Hellinger
loss d%(f, f;c,,;i) is bounded in probability by the index of re-
solvability R,(f). With some additional conditions, the risk
Ed%(f, f’3=55) is proved to be bounded by a multiple of the

index of resolvability R.(f), i.e.,
Edy(f, fig,) = ORn())

As a consequence, by examining the index of resolvability
for various nonparametric class of functions, the convergence
rates of the modified AIC procedure can be easily upper-
bounded. For some cases, the optimal rate of convergence
is shown to be achieved.

ITI. AN APPLICATION

As an application, we consider estimating a density function
on [0,1] using a sequence of exponential families with spline
basis functions. The logarithm of the density is assumed to be
in the Sobolev space W3 (which consists of all the functions on
[0,1] having s square-integrable derivatives) with s unknown.
The new criterion is used to select the spline order and the
number of knots. For each s and each number of knots, sep-
arate spline models are considered for each radius constraint
|l log f(z,8)|lec <7, r=1,2,... .The correspoinding Ax depends
onr and s. We conclude that the optimal rate of convergence
is achieved simultaneously for density function f with f € W3
for all s without knowing it in advance.
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ABSTRACT

A wavelet-based neural network is described. The net-
work is similar to the radial basis function (RBF) network,
except that the RBF’s are replaced by orthonormal scaling
functions. It has been shown that the wavelet network has
universal and L? approximation properties and is a consis-
tent function estimator. Convergence rates, which avoid the
“curse of dimensionality,” are obtained for certain function
classes. The network also compared favorably to the MLP
and RBF networks in the experiments.

1. INTRODUCTION

Recently, neural networks have become a popular tool in
non-parametric function learning. While the multi-layer
perceptron (MLP) is probably the most frequently used,
its training process often converge too slowly or settle in
undesirable local minima. The radial basis function (RBF)
network can be trained more easily provided that certain
network parameters (e.g., the centers and the variances)
are properly preset. As a function representation scheme,
the RBF network uses a family of locally-supported ba-
sis functions, which allows it to represent a “rich” class of
functions. However, since the basis functions are generally
non-orthogonal, the RBF representation is not unique (co-
efficients “harder to learn”) and not the most efficient.

In this work, we replace the basis functions in the RBF
network by an orthonormal basis, namely, the scaling func-
tions associated with a orthonormal wavelet basis. For a
given function, this “wavelet network”, provides a unique
(coefficients “easy to learn”) and efficient representation.
The use of orthonormal scaling functions also facilitates the
theoretical analysis the network, such as universal approx-
imation and consistency. The idea of using orthonormal
wavelets in neural networks has also been investigated re-
cently Zhang and Benveniste and by Pati and Krishnaprasad
(see the reference list of [1]), who use non-orthogonal wavelets,
and by Boubez (see also [1]), who is concerned more with
classification than with function learning.

2. WAVELET NETWORKS

In this section, we briefly summarize the main theoretical
and experimental results related to the wavelet network.
More details can be found in [1]. For the sake of simplicity,
we first look at the 1-D case (one input and one output).

Gilbert G. Walter

Dept. of Mathematics
University of Wisconsin - Milwaukee
Milwaukee, WI 53201

ggw@convex.csd.uwm.edu

Since in most practical applications, the function of in-
terest has finite support, we assume that, without lose of
generality, that f(t) € L?(R) and has finite support. Let
g(t) be a wavelet-based approximation to f(t). Then, there
exists a sufficiently large M, such that

F) =g(t) = erp(2Mt = k)(2)- (1)

k

where ¢(t) is a compactly-supported (or fast-decaying) scal-
ing function and k runs through a finite set of integers. g(t)
can be implemented as a three-layer network [1] and ci’s
can be estimated by minimizing the mean square error be-
tween f(t) and g(t) over a training data set. Since multi-
dimensional scaling functions can be obtained easily from
(1), the extension of the network to dimensions higher than
one is straightforward.

The theoretical results related to the wavelet network
are described by the following three theorems:

Theorem 1. The wavelet network has the properties
of universal approximation and L? approximation.

Theorem 2. The rates of convergence for Theorem 1
can be made arbitrarily rapid in the following sense: for
any a > 0, there is a Sobolev space Hg such that for any
f € Hpg, there exists a sequence of wavelet networks fn,
where n = 2™, such that

If = fallu=0(n™%),  |If = fallzz =0(=7%).  (2)

Here ||-|| and ||-|| 2 are the sup and L? norms, respectively.

Theorem 3. Assume that the training data are ii.d.
and uniformly distributed. Then, the wavelet network is L?
consistent in the mean square sense and the rate of conver-
gence for the coefficients is O(1/N), where N is the size of
training data set.

The proof of these theorems can be found in [1]. In the
experiments, the wavelet network performed better than
the MLP with similar complexity in learning discontinuous
functions and the performance of the RBF became compa-
rable to the wavelet network only when some of its param-
eters are preset according to the wavelet network.

3. REFERENCES
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“Wavelet neural networks for function learning,” sub-
mitted to IEEE Trans. Signal Processing.
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A Comparison of Algorithms for Lossless Data Compression Using the
Lempel-Ziv-Welch Type Methods
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\

Abstract - Lempel-Ziv-Welch methods and their
variations are all based on the principle of using a
prescribed parsing rule to find duplicate occurrences of
data and encoding the repeated strings with some sort of
special code word identifying the data to be replaced.
This paper includes a general presentation of five
existing lossless compression methods used in any
application of digital signal processing. The comparisons
are made experimentally by computer simulation.

I. INTRODUCTION

The purpose of this paper is to compare the compression
performances of five lossless compression algorithms
applied to various types of files.

II. PRESENTATION OF ALGORITHMS

Algorithm 1 [1], {3] is the Lempel-Ziv 1977 method,
Algorithm 2 [2] is the Lempel-Ziv 1978 method, Algorithm
3 [1], [5] is an intermediate 1992 method of Algorithms 1
and 2, Algorithm 4 [5] is the Welch variant of Algorithm 3
and Algorithm 5 [5] is an intermediate method of LZW
method [4] and Algorithm 4. Note that the LZW method is
a practical Welch type variant of Algorithm 2.

III. SIMULATION RESULTS AND REMARKS

In order to investigate the performance of the practical
schemes, the proposed algorithms have been implemented
by experimental computer programs, which were tested
against various kinds of byte-oriented data. In addition to
the compression ratio R(n), the size S(n) of the
corresponding string table is shown in the table as a
function of the input length n.

n [bytes] 100 200 500 1000 2000 5000 10000
Alg, R(n) 72 65 56 S0 41 35 32
4 S(n) 355 451 748 1250 2247 5252 10254
Alg. R(n) s 67 58 52 46 39 35
s S(n) 321 384 625 809 1627 3074 5103
LZW R 80 72 64 .56 51 42 38
meth.  S(n) 298 370 420 701 996 1675 2982

In order to study the asymptotic convergence of the
compression ratio, we used: a Turbo Pascal file of length
6250 bytes, a maximum length of 32 bytes for the source
words, a length of 3 bytes for the code words and various
values for the encoder buffer length. The results are:
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nb [bytes] 100 200 400 800 1600
Algorithm 1 R(n) 76 .57 42 37 33
Algorithm 4 R(n) = 42

Algorithm § R(n) = .45

LZW meth. R(n) = .Sl

The algorithms have also been tested on different types of
program and text files. The values obtained for the
compression ratio R(n) are shown in the following:

File Type Size Alg. 4 Alg. 5 LzZw
{bytes]

#1 Pascal 2993 .50 .55 60

#2 Text 1237 77 .81 87

#3 Pascal 6250 42 45 S1

#4 Pascal 10423 32 .35 .38

The best compression ratio is given by Algorithm 4. In
general, Algorithm 4 shows between 10 an 16 percent

- improvement over the LZW method, and Algorithm 5

shows between 7 and 11 percent improvement over LZW.
Good values for the compression ratio are obtained only for
input sequences with great length. For short-length files
with small entropy, Algorithm 1 is the best. Also. regarding
the memory spacc for encoding, Algorithm i has the best
performances, because the other ones requires greater
memory space for developing the string tables.
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